Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team and City96. All rights reserved. | |
# # | |
# # Licensed under the Apache License, Version 2.0 (the "License"); | |
# # you may not use this file except in compliance with the License. | |
# # You may obtain a copy of the License at | |
# # | |
# # http://www.apache.org/licenses/LICENSE-2.0 | |
# # | |
# # Unless required by applicable law or agreed to in writing, software | |
# # distributed under the License is distributed on an "AS IS" BASIS, | |
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# # See the License for the specific language governing permissions and | |
# # limitations under the License. | |
import inspect | |
from contextlib import nullcontext | |
import gguf | |
import torch | |
import torch.nn as nn | |
from ...utils import is_accelerate_available | |
if is_accelerate_available(): | |
import accelerate | |
from accelerate import init_empty_weights | |
from accelerate.hooks import add_hook_to_module, remove_hook_from_module | |
# Copied from diffusers.quantizers.bitsandbytes.utils._create_accelerate_new_hook | |
def _create_accelerate_new_hook(old_hook): | |
r""" | |
Creates a new hook based on the old hook. Use it only if you know what you are doing ! This method is a copy of: | |
https://github.com/huggingface/peft/blob/748f7968f3a31ec06a1c2b0328993319ad9a150a/src/peft/utils/other.py#L245 with | |
some changes | |
""" | |
old_hook_cls = getattr(accelerate.hooks, old_hook.__class__.__name__) | |
old_hook_attr = old_hook.__dict__ | |
filtered_old_hook_attr = {} | |
old_hook_init_signature = inspect.signature(old_hook_cls.__init__) | |
for k in old_hook_attr.keys(): | |
if k in old_hook_init_signature.parameters: | |
filtered_old_hook_attr[k] = old_hook_attr[k] | |
new_hook = old_hook_cls(**filtered_old_hook_attr) | |
return new_hook | |
def _replace_with_gguf_linear(model, compute_dtype, state_dict, prefix="", modules_to_not_convert=[]): | |
def _should_convert_to_gguf(state_dict, prefix): | |
weight_key = prefix + "weight" | |
return weight_key in state_dict and isinstance(state_dict[weight_key], GGUFParameter) | |
has_children = list(model.children()) | |
if not has_children: | |
return | |
for name, module in model.named_children(): | |
module_prefix = prefix + name + "." | |
_replace_with_gguf_linear(module, compute_dtype, state_dict, module_prefix, modules_to_not_convert) | |
if ( | |
isinstance(module, nn.Linear) | |
and _should_convert_to_gguf(state_dict, module_prefix) | |
and name not in modules_to_not_convert | |
): | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
model._modules[name] = GGUFLinear( | |
module.in_features, | |
module.out_features, | |
module.bias is not None, | |
compute_dtype=compute_dtype, | |
) | |
model._modules[name].source_cls = type(module) | |
# Force requires_grad to False to avoid unexpected errors | |
model._modules[name].requires_grad_(False) | |
return model | |
def _dequantize_gguf_and_restore_linear(model, modules_to_not_convert=[]): | |
for name, module in model.named_children(): | |
if isinstance(module, GGUFLinear) and name not in modules_to_not_convert: | |
device = module.weight.device | |
bias = getattr(module, "bias", None) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
new_module = nn.Linear( | |
module.in_features, | |
module.out_features, | |
module.bias is not None, | |
device=device, | |
) | |
new_module.weight = nn.Parameter(dequantize_gguf_tensor(module.weight)) | |
if bias is not None: | |
new_module.bias = bias | |
# Create a new hook and attach it in case we use accelerate | |
if hasattr(module, "_hf_hook"): | |
old_hook = module._hf_hook | |
new_hook = _create_accelerate_new_hook(old_hook) | |
remove_hook_from_module(module) | |
add_hook_to_module(new_module, new_hook) | |
new_module.to(device) | |
model._modules[name] = new_module | |
has_children = list(module.children()) | |
if has_children: | |
_dequantize_gguf_and_restore_linear(module, modules_to_not_convert) | |
return model | |
# dequantize operations based on torch ports of GGUF dequantize_functions | |
# from City96 | |
# more info: https://github.com/city96/ComfyUI-GGUF/blob/main/dequant.py | |
QK_K = 256 | |
K_SCALE_SIZE = 12 | |
def to_uint32(x): | |
x = x.view(torch.uint8).to(torch.int32) | |
return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1) | |
def split_block_dims(blocks, *args): | |
n_max = blocks.shape[1] | |
dims = list(args) + [n_max - sum(args)] | |
return torch.split(blocks, dims, dim=1) | |
def get_scale_min(scales): | |
n_blocks = scales.shape[0] | |
scales = scales.view(torch.uint8) | |
scales = scales.reshape((n_blocks, 3, 4)) | |
d, m, m_d = torch.split(scales, scales.shape[-2] // 3, dim=-2) | |
sc = torch.cat([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], dim=-1) | |
min = torch.cat([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], dim=-1) | |
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8))) | |
def dequantize_blocks_Q8_0(blocks, block_size, type_size, dtype=None): | |
d, x = split_block_dims(blocks, 2) | |
d = d.view(torch.float16).to(dtype) | |
x = x.view(torch.int8) | |
return d * x | |
def dequantize_blocks_Q5_1(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
d, m, qh, qs = split_block_dims(blocks, 2, 2, 4) | |
d = d.view(torch.float16).to(dtype) | |
m = m.view(torch.float16).to(dtype) | |
qh = to_uint32(qh) | |
qh = qh.reshape((n_blocks, 1)) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) | |
ql = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( | |
[0, 4], device=d.device, dtype=torch.uint8 | |
).reshape(1, 1, 2, 1) | |
qh = (qh & 1).to(torch.uint8) | |
ql = (ql & 0x0F).reshape((n_blocks, -1)) | |
qs = ql | (qh << 4) | |
return (d * qs) + m | |
def dequantize_blocks_Q5_0(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
d, qh, qs = split_block_dims(blocks, 2, 4) | |
d = d.view(torch.float16).to(dtype) | |
qh = to_uint32(qh) | |
qh = qh.reshape(n_blocks, 1) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) | |
ql = qs.reshape(n_blocks, -1, 1, block_size // 2) >> torch.tensor( | |
[0, 4], device=d.device, dtype=torch.uint8 | |
).reshape(1, 1, 2, 1) | |
qh = (qh & 1).to(torch.uint8) | |
ql = (ql & 0x0F).reshape(n_blocks, -1) | |
qs = (ql | (qh << 4)).to(torch.int8) - 16 | |
return d * qs | |
def dequantize_blocks_Q4_1(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
d, m, qs = split_block_dims(blocks, 2, 2) | |
d = d.view(torch.float16).to(dtype) | |
m = m.view(torch.float16).to(dtype) | |
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( | |
[0, 4], device=d.device, dtype=torch.uint8 | |
).reshape(1, 1, 2, 1) | |
qs = (qs & 0x0F).reshape(n_blocks, -1) | |
return (d * qs) + m | |
def dequantize_blocks_Q4_0(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
d, qs = split_block_dims(blocks, 2) | |
d = d.view(torch.float16).to(dtype) | |
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( | |
[0, 4], device=d.device, dtype=torch.uint8 | |
).reshape((1, 1, 2, 1)) | |
qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8 | |
return d * qs | |
def dequantize_blocks_Q6_K(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
( | |
ql, | |
qh, | |
scales, | |
d, | |
) = split_block_dims(blocks, QK_K // 2, QK_K // 4, QK_K // 16) | |
scales = scales.view(torch.int8).to(dtype) | |
d = d.view(torch.float16).to(dtype) | |
d = (d * scales).reshape((n_blocks, QK_K // 16, 1)) | |
ql = ql.reshape((n_blocks, -1, 1, 64)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( | |
(1, 1, 2, 1) | |
) | |
ql = (ql & 0x0F).reshape((n_blocks, -1, 32)) | |
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape( | |
(1, 1, 4, 1) | |
) | |
qh = (qh & 0x03).reshape((n_blocks, -1, 32)) | |
q = (ql | (qh << 4)).to(torch.int8) - 32 | |
q = q.reshape((n_blocks, QK_K // 16, -1)) | |
return (d * q).reshape((n_blocks, QK_K)) | |
def dequantize_blocks_Q5_K(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
d, dmin, scales, qh, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE, QK_K // 8) | |
d = d.view(torch.float16).to(dtype) | |
dmin = dmin.view(torch.float16).to(dtype) | |
sc, m = get_scale_min(scales) | |
d = (d * sc).reshape((n_blocks, -1, 1)) | |
dm = (dmin * m).reshape((n_blocks, -1, 1)) | |
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( | |
(1, 1, 2, 1) | |
) | |
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.arange(0, 8, device=d.device, dtype=torch.uint8).reshape( | |
(1, 1, 8, 1) | |
) | |
ql = (ql & 0x0F).reshape((n_blocks, -1, 32)) | |
qh = (qh & 0x01).reshape((n_blocks, -1, 32)) | |
q = ql | (qh << 4) | |
return (d * q - dm).reshape((n_blocks, QK_K)) | |
def dequantize_blocks_Q4_K(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
d, dmin, scales, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE) | |
d = d.view(torch.float16).to(dtype) | |
dmin = dmin.view(torch.float16).to(dtype) | |
sc, m = get_scale_min(scales) | |
d = (d * sc).reshape((n_blocks, -1, 1)) | |
dm = (dmin * m).reshape((n_blocks, -1, 1)) | |
qs = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( | |
(1, 1, 2, 1) | |
) | |
qs = (qs & 0x0F).reshape((n_blocks, -1, 32)) | |
return (d * qs - dm).reshape((n_blocks, QK_K)) | |
def dequantize_blocks_Q3_K(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
hmask, qs, scales, d = split_block_dims(blocks, QK_K // 8, QK_K // 4, 12) | |
d = d.view(torch.float16).to(dtype) | |
lscales, hscales = scales[:, :8], scales[:, 8:] | |
lscales = lscales.reshape((n_blocks, 1, 8)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( | |
(1, 2, 1) | |
) | |
lscales = lscales.reshape((n_blocks, 16)) | |
hscales = hscales.reshape((n_blocks, 1, 4)) >> torch.tensor( | |
[0, 2, 4, 6], device=d.device, dtype=torch.uint8 | |
).reshape((1, 4, 1)) | |
hscales = hscales.reshape((n_blocks, 16)) | |
scales = (lscales & 0x0F) | ((hscales & 0x03) << 4) | |
scales = scales.to(torch.int8) - 32 | |
dl = (d * scales).reshape((n_blocks, 16, 1)) | |
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape( | |
(1, 1, 4, 1) | |
) | |
qh = hmask.reshape(n_blocks, -1, 1, 32) >> torch.arange(0, 8, device=d.device, dtype=torch.uint8).reshape( | |
(1, 1, 8, 1) | |
) | |
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & 3 | |
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & 1) ^ 1 | |
q = ql.to(torch.int8) - (qh << 2).to(torch.int8) | |
return (dl * q).reshape((n_blocks, QK_K)) | |
def dequantize_blocks_Q2_K(blocks, block_size, type_size, dtype=None): | |
n_blocks = blocks.shape[0] | |
scales, qs, d, dmin = split_block_dims(blocks, QK_K // 16, QK_K // 4, 2) | |
d = d.view(torch.float16).to(dtype) | |
dmin = dmin.view(torch.float16).to(dtype) | |
# (n_blocks, 16, 1) | |
dl = (d * (scales & 0xF)).reshape((n_blocks, QK_K // 16, 1)) | |
ml = (dmin * (scales >> 4)).reshape((n_blocks, QK_K // 16, 1)) | |
shift = torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1)) | |
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & 3 | |
qs = qs.reshape((n_blocks, QK_K // 16, 16)) | |
qs = dl * qs - ml | |
return qs.reshape((n_blocks, -1)) | |
def dequantize_blocks_BF16(blocks, block_size, type_size, dtype=None): | |
return (blocks.view(torch.int16).to(torch.int32) << 16).view(torch.float32) | |
GGML_QUANT_SIZES = gguf.GGML_QUANT_SIZES | |
dequantize_functions = { | |
gguf.GGMLQuantizationType.BF16: dequantize_blocks_BF16, | |
gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0, | |
gguf.GGMLQuantizationType.Q5_1: dequantize_blocks_Q5_1, | |
gguf.GGMLQuantizationType.Q5_0: dequantize_blocks_Q5_0, | |
gguf.GGMLQuantizationType.Q4_1: dequantize_blocks_Q4_1, | |
gguf.GGMLQuantizationType.Q4_0: dequantize_blocks_Q4_0, | |
gguf.GGMLQuantizationType.Q6_K: dequantize_blocks_Q6_K, | |
gguf.GGMLQuantizationType.Q5_K: dequantize_blocks_Q5_K, | |
gguf.GGMLQuantizationType.Q4_K: dequantize_blocks_Q4_K, | |
gguf.GGMLQuantizationType.Q3_K: dequantize_blocks_Q3_K, | |
gguf.GGMLQuantizationType.Q2_K: dequantize_blocks_Q2_K, | |
} | |
SUPPORTED_GGUF_QUANT_TYPES = list(dequantize_functions.keys()) | |
def _quant_shape_from_byte_shape(shape, type_size, block_size): | |
return (*shape[:-1], shape[-1] // type_size * block_size) | |
def dequantize_gguf_tensor(tensor): | |
if not hasattr(tensor, "quant_type"): | |
return tensor | |
quant_type = tensor.quant_type | |
dequant_fn = dequantize_functions[quant_type] | |
block_size, type_size = GGML_QUANT_SIZES[quant_type] | |
tensor = tensor.view(torch.uint8) | |
shape = _quant_shape_from_byte_shape(tensor.shape, type_size, block_size) | |
n_blocks = tensor.numel() // type_size | |
blocks = tensor.reshape((n_blocks, type_size)) | |
dequant = dequant_fn(blocks, block_size, type_size) | |
dequant = dequant.reshape(shape) | |
return dequant.as_tensor() | |
class GGUFParameter(torch.nn.Parameter): | |
def __new__(cls, data, requires_grad=False, quant_type=None): | |
data = data if data is not None else torch.empty(0) | |
self = torch.Tensor._make_subclass(cls, data, requires_grad) | |
self.quant_type = quant_type | |
return self | |
def as_tensor(self): | |
return torch.Tensor._make_subclass(torch.Tensor, self, self.requires_grad) | |
def __torch_function__(cls, func, types, args=(), kwargs=None): | |
if kwargs is None: | |
kwargs = {} | |
result = super().__torch_function__(func, types, args, kwargs) | |
# When converting from original format checkpoints we often use splits, cats etc on tensors | |
# this method ensures that the returned tensor type from those operations remains GGUFParameter | |
# so that we preserve quant_type information | |
quant_type = None | |
for arg in args: | |
if isinstance(arg, list) and (arg[0], GGUFParameter): | |
quant_type = arg[0].quant_type | |
break | |
if isinstance(arg, GGUFParameter): | |
quant_type = arg.quant_type | |
break | |
if isinstance(result, torch.Tensor): | |
return cls(result, quant_type=quant_type) | |
# Handle tuples and lists | |
elif isinstance(result, (tuple, list)): | |
# Preserve the original type (tuple or list) | |
wrapped = [cls(x, quant_type=quant_type) if isinstance(x, torch.Tensor) else x for x in result] | |
return type(result)(wrapped) | |
else: | |
return result | |
class GGUFLinear(nn.Linear): | |
def __init__( | |
self, | |
in_features, | |
out_features, | |
bias=False, | |
compute_dtype=None, | |
device=None, | |
) -> None: | |
super().__init__(in_features, out_features, bias, device) | |
self.compute_dtype = compute_dtype | |
def forward(self, inputs): | |
weight = dequantize_gguf_tensor(self.weight) | |
weight = weight.to(self.compute_dtype) | |
bias = self.bias.to(self.compute_dtype) | |
output = torch.nn.functional.linear(inputs, weight, bias) | |
return output | |