Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from contextlib import contextmanager | |
from copy import deepcopy | |
from functools import update_wrapper | |
from types import MethodType | |
from .peft_model import PeftConfig, PeftModel | |
from .tuners.lora.layer import LoraLayer | |
def update_forward_signature(model: PeftModel) -> None: | |
""" | |
Updates the forward signature of the PeftModel to include parents class signature | |
model (`PeftModel`): Peft model to update the forward signature | |
Example: | |
```python | |
>>> from transformers import WhisperForConditionalGeneration | |
>>> from peft import get_peft_model, LoraConfig, update_forward_signature | |
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") | |
>>> peft_config = LoraConfig(r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj"]) | |
>>> peft_model = get_peft_model(model, peft_config) | |
>>> update_forward_signature(peft_model) | |
``` | |
""" | |
# Only update signature when the current forward signature only has *args and **kwargs | |
current_signature = inspect.signature(model.forward) | |
if ( | |
len(current_signature.parameters) == 2 | |
and "args" in current_signature.parameters | |
and "kwargs" in current_signature.parameters | |
): | |
forward = deepcopy(model.forward.__func__) | |
update_wrapper( | |
forward, type(model.get_base_model()).forward, assigned=("__doc__", "__name__", "__annotations__") | |
) | |
model.forward = MethodType(forward, model) | |
def update_generate_signature(model: PeftModel) -> None: | |
""" | |
Updates the generate signature of a PeftModel with overriding generate to include parents class signature | |
model (`PeftModel`): Peft model to update the generate signature | |
Example: | |
```python | |
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
>>> from peft import get_peft_model, LoraConfig, TaskType, update_generate_signature | |
>>> model_name_or_path = "bigscience/mt0-large" | |
>>> tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) | |
>>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) | |
>>> peft_config = LoraConfig( | |
... task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 | |
... ) | |
>>> peft_model = get_peft_model(model, peft_config) | |
>>> update_generate_signature(peft_model) | |
>>> help(peft_model.generate) | |
``` | |
""" | |
if not hasattr(model, "generate"): | |
return | |
current_signature = inspect.signature(model.generate) | |
if ( | |
len(current_signature.parameters) == 2 | |
and "args" in current_signature.parameters | |
and "kwargs" in current_signature.parameters | |
) or (len(current_signature.parameters) == 1 and "kwargs" in current_signature.parameters): | |
generate = deepcopy(model.generate.__func__) | |
update_wrapper( | |
generate, | |
type(model.get_base_model()).generate, | |
assigned=("__doc__", "__name__", "__annotations__"), | |
) | |
model.generate = MethodType(generate, model) | |
def update_signature(model: PeftModel, method: str = "all") -> None: | |
""" | |
Updates the signature of a PeftModel include parents class signature for forward or generate method | |
model (`PeftModel`): Peft model to update generate or forward signature method (`str`): method to update | |
signature choose one of "forward", "generate", "all" | |
Example: | |
```python | |
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
>>> from peft import get_peft_model, LoraConfig, TaskType, update_signature | |
>>> model_name_or_path = "bigscience/mt0-large" | |
>>> tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) | |
>>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) | |
>>> peft_config = LoraConfig( | |
... task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 | |
... ) | |
>>> peft_model = get_peft_model(model, peft_config) | |
>>> update_signature(peft_model) | |
>>> help(peft_model.generate) | |
``` | |
""" | |
if method == "forward": | |
update_forward_signature(model) | |
elif method == "generate": | |
update_generate_signature(model) | |
elif method == "all": | |
update_forward_signature(model) | |
update_generate_signature(model) | |
else: | |
raise ValueError(f"method {method} is not supported please choose one of ['forward', 'generate', 'all']") | |
def check_if_peft_model(model_name_or_path: str) -> bool: | |
""" | |
Check if the model is a PEFT model. | |
Args: | |
model_name_or_path (`str`): | |
Model id to check, can be local or on the Hugging Face Hub. | |
Returns: | |
`bool`: True if the model is a PEFT model, False otherwise. | |
""" | |
is_peft_model = True | |
try: | |
PeftConfig.from_pretrained(model_name_or_path) | |
except Exception: | |
# allow broad exceptions so that this works even if new exceptions are added on HF Hub side | |
is_peft_model = False | |
return is_peft_model | |
def rescale_adapter_scale(model, multiplier): | |
""" | |
Context manager to temporarily rescale the scaling of the LoRA adapter in a model. | |
The original scaling values are restored when the context manager exits. This context manager works with the | |
transformers and diffusers models that have directly loaded LoRA adapters. | |
For LoRA, applying this context manager with multiplier in [0, 1] is strictly equivalent to applying | |
[wise-ft](https://arxiv.org/abs/2109.01903) (see [#1940](https://github.com/huggingface/peft/issues/1940) for | |
details). It can improve the performances of the model if there is a distribution shiftbetween the training data | |
used for fine-tuning, and the test data used during inference. | |
Warning: It has been reported that when using Apple's MPS backend for PyTorch, it is necessary to add a short sleep | |
time after exiting the context before the scales are fully restored. | |
Args: | |
model: The model containing `LoraLayer` modules whose scaling is to be adjusted. | |
multiplier (float or int): | |
The multiplier that rescales the `scaling` attribute. Must be of type float or int. | |
Raises: | |
ValueError: If the model does not contain any `LoraLayer` | |
instances, indicating that the model does not support scaling. | |
Example: | |
```python | |
>>> model = ModelWithLoraLayer() | |
>>> multiplier = 0.5 | |
>>> with rescale_adapter_scale(model, multiplier): | |
... outputs = model(**inputs) # Perform operations with the scaled model | |
>>> outputs = model(**inputs) # The original scaling values are restored here | |
``` | |
""" | |
# check if multiplier has a valid data type | |
if not isinstance(multiplier, (float, int)): | |
raise TypeError(f"Argument multiplier should be of type float, got {type(multiplier)}") | |
# iterate on the model's modules and grab the original scaling attribute | |
# from the lora layers if present | |
original_scaling = {} | |
for module in model.modules(): | |
if isinstance(module, LoraLayer): | |
original_scaling[module] = module.scaling.copy() | |
module.scaling = {k: v * multiplier for k, v in module.scaling.items()} | |
# check whether scaling is prohibited on model | |
# the original scaling dictionary should be empty | |
# if there were no lora layers | |
if not original_scaling: | |
raise ValueError("scaling is only supported for models with `LoraLayer`s") | |
try: | |
yield | |
finally: | |
# restore original scaling values after exiting the context | |
for module, scaling in original_scaling.items(): | |
module.scaling = scaling | |