Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils import is_torch_version, logging | |
from ...utils.accelerate_utils import apply_forward_hook | |
from ..activations import get_activation | |
from ..attention_processor import Attention | |
from ..modeling_outputs import AutoencoderKLOutput | |
from ..modeling_utils import ModelMixin | |
from .vae import DecoderOutput, DiagonalGaussianDistribution | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def prepare_causal_attention_mask( | |
num_frames: int, height_width: int, dtype: torch.dtype, device: torch.device, batch_size: int = None | |
) -> torch.Tensor: | |
seq_len = num_frames * height_width | |
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device) | |
for i in range(seq_len): | |
i_frame = i // height_width | |
mask[i, : (i_frame + 1) * height_width] = 0 | |
if batch_size is not None: | |
mask = mask.unsqueeze(0).expand(batch_size, -1, -1) | |
return mask | |
class HunyuanVideoCausalConv3d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, int, int]] = 3, | |
stride: Union[int, Tuple[int, int, int]] = 1, | |
padding: Union[int, Tuple[int, int, int]] = 0, | |
dilation: Union[int, Tuple[int, int, int]] = 1, | |
bias: bool = True, | |
pad_mode: str = "replicate", | |
) -> None: | |
super().__init__() | |
kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size | |
self.pad_mode = pad_mode | |
self.time_causal_padding = ( | |
kernel_size[0] // 2, | |
kernel_size[0] // 2, | |
kernel_size[1] // 2, | |
kernel_size[1] // 2, | |
kernel_size[2] - 1, | |
0, | |
) | |
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = F.pad(hidden_states, self.time_causal_padding, mode=self.pad_mode) | |
return self.conv(hidden_states) | |
class HunyuanVideoUpsampleCausal3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
kernel_size: int = 3, | |
stride: int = 1, | |
bias: bool = True, | |
upsample_factor: Tuple[float, float, float] = (2, 2, 2), | |
) -> None: | |
super().__init__() | |
out_channels = out_channels or in_channels | |
self.upsample_factor = upsample_factor | |
self.conv = HunyuanVideoCausalConv3d(in_channels, out_channels, kernel_size, stride, bias=bias) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
num_frames = hidden_states.size(2) | |
first_frame, other_frames = hidden_states.split((1, num_frames - 1), dim=2) | |
first_frame = F.interpolate( | |
first_frame.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest" | |
).unsqueeze(2) | |
if num_frames > 1: | |
# See: https://github.com/pytorch/pytorch/issues/81665 | |
# Unless you have a version of pytorch where non-contiguous implementation of F.interpolate | |
# is fixed, this will raise either a runtime error, or fail silently with bad outputs. | |
# If you are encountering an error here, make sure to try running encoding/decoding with | |
# `vae.enable_tiling()` first. If that doesn't work, open an issue at: | |
# https://github.com/huggingface/diffusers/issues | |
other_frames = other_frames.contiguous() | |
other_frames = F.interpolate(other_frames, scale_factor=self.upsample_factor, mode="nearest") | |
hidden_states = torch.cat((first_frame, other_frames), dim=2) | |
else: | |
hidden_states = first_frame | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class HunyuanVideoDownsampleCausal3D(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
out_channels: Optional[int] = None, | |
padding: int = 1, | |
kernel_size: int = 3, | |
bias: bool = True, | |
stride=2, | |
) -> None: | |
super().__init__() | |
out_channels = out_channels or channels | |
self.conv = HunyuanVideoCausalConv3d(channels, out_channels, kernel_size, stride, padding, bias=bias) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class HunyuanVideoResnetBlockCausal3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
dropout: float = 0.0, | |
groups: int = 32, | |
eps: float = 1e-6, | |
non_linearity: str = "swish", | |
) -> None: | |
super().__init__() | |
out_channels = out_channels or in_channels | |
self.nonlinearity = get_activation(non_linearity) | |
self.norm1 = nn.GroupNorm(groups, in_channels, eps=eps, affine=True) | |
self.conv1 = HunyuanVideoCausalConv3d(in_channels, out_channels, 3, 1, 0) | |
self.norm2 = nn.GroupNorm(groups, out_channels, eps=eps, affine=True) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = HunyuanVideoCausalConv3d(out_channels, out_channels, 3, 1, 0) | |
self.conv_shortcut = None | |
if in_channels != out_channels: | |
self.conv_shortcut = HunyuanVideoCausalConv3d(in_channels, out_channels, 1, 1, 0) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = hidden_states.contiguous() | |
residual = hidden_states | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
residual = self.conv_shortcut(residual) | |
hidden_states = hidden_states + residual | |
return hidden_states | |
class HunyuanVideoMidBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
add_attention: bool = True, | |
attention_head_dim: int = 1, | |
) -> None: | |
super().__init__() | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
self.add_attention = add_attention | |
# There is always at least one resnet | |
resnets = [ | |
HunyuanVideoResnetBlockCausal3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
) | |
] | |
attentions = [] | |
for _ in range(num_layers): | |
if self.add_attention: | |
attentions.append( | |
Attention( | |
in_channels, | |
heads=in_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
eps=resnet_eps, | |
norm_num_groups=resnet_groups, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
else: | |
attentions.append(None) | |
resnets.append( | |
HunyuanVideoResnetBlockCausal3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.resnets[0]), hidden_states, **ckpt_kwargs | |
) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if attn is not None: | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3) | |
attention_mask = prepare_causal_attention_mask( | |
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size | |
) | |
hidden_states = attn(hidden_states, attention_mask=attention_mask) | |
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, **ckpt_kwargs | |
) | |
else: | |
hidden_states = self.resnets[0](hidden_states) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if attn is not None: | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3) | |
attention_mask = prepare_causal_attention_mask( | |
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size | |
) | |
hidden_states = attn(hidden_states, attention_mask=attention_mask) | |
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3) | |
hidden_states = resnet(hidden_states) | |
return hidden_states | |
class HunyuanVideoDownBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
add_downsample: bool = True, | |
downsample_stride: int = 2, | |
downsample_padding: int = 1, | |
) -> None: | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
HunyuanVideoResnetBlockCausal3D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
HunyuanVideoDownsampleCausal3D( | |
out_channels, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
stride=downsample_stride, | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
for resnet in self.resnets: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, **ckpt_kwargs | |
) | |
else: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
return hidden_states | |
class HunyuanVideoUpBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
add_upsample: bool = True, | |
upsample_scale_factor: Tuple[int, int, int] = (2, 2, 2), | |
) -> None: | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
HunyuanVideoResnetBlockCausal3D( | |
in_channels=input_channels, | |
out_channels=out_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[ | |
HunyuanVideoUpsampleCausal3D( | |
out_channels, | |
out_channels=out_channels, | |
upsample_factor=upsample_scale_factor, | |
) | |
] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
for resnet in self.resnets: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, **ckpt_kwargs | |
) | |
else: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
class HunyuanVideoEncoder3D(nn.Module): | |
r""" | |
Causal encoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603). | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str, ...] = ( | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
), | |
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
double_z: bool = True, | |
mid_block_add_attention=True, | |
temporal_compression_ratio: int = 4, | |
spatial_compression_ratio: int = 8, | |
) -> None: | |
super().__init__() | |
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1) | |
self.mid_block = None | |
self.down_blocks = nn.ModuleList([]) | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
if down_block_type != "HunyuanVideoDownBlock3D": | |
raise ValueError(f"Unsupported down_block_type: {down_block_type}") | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio)) | |
num_time_downsample_layers = int(np.log2(temporal_compression_ratio)) | |
if temporal_compression_ratio == 4: | |
add_spatial_downsample = bool(i < num_spatial_downsample_layers) | |
add_time_downsample = bool( | |
i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block | |
) | |
elif temporal_compression_ratio == 8: | |
add_spatial_downsample = bool(i < num_spatial_downsample_layers) | |
add_time_downsample = bool(i < num_time_downsample_layers) | |
else: | |
raise ValueError(f"Unsupported time_compression_ratio: {temporal_compression_ratio}") | |
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1) | |
downsample_stride_T = (2,) if add_time_downsample else (1,) | |
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW) | |
down_block = HunyuanVideoDownBlock3D( | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
add_downsample=bool(add_spatial_downsample or add_time_downsample), | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
downsample_stride=downsample_stride, | |
downsample_padding=0, | |
) | |
self.down_blocks.append(down_block) | |
self.mid_block = HunyuanVideoMidBlock3D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
add_attention=mid_block_add_attention, | |
) | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
conv_out_channels = 2 * out_channels if double_z else out_channels | |
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3) | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.conv_in(hidden_states) | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
for down_block in self.down_blocks: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(down_block), hidden_states, **ckpt_kwargs | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs | |
) | |
else: | |
for down_block in self.down_blocks: | |
hidden_states = down_block(hidden_states) | |
hidden_states = self.mid_block(hidden_states) | |
hidden_states = self.conv_norm_out(hidden_states) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class HunyuanVideoDecoder3D(nn.Module): | |
r""" | |
Causal decoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603). | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
up_block_types: Tuple[str, ...] = ( | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
), | |
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
mid_block_add_attention=True, | |
time_compression_ratio: int = 4, | |
spatial_compression_ratio: int = 8, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1) | |
self.up_blocks = nn.ModuleList([]) | |
# mid | |
self.mid_block = HunyuanVideoMidBlock3D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
add_attention=mid_block_add_attention, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
if up_block_type != "HunyuanVideoUpBlock3D": | |
raise ValueError(f"Unsupported up_block_type: {up_block_type}") | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio)) | |
num_time_upsample_layers = int(np.log2(time_compression_ratio)) | |
if time_compression_ratio == 4: | |
add_spatial_upsample = bool(i < num_spatial_upsample_layers) | |
add_time_upsample = bool( | |
i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block | |
) | |
else: | |
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}") | |
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1) | |
upsample_scale_factor_T = (2,) if add_time_upsample else (1,) | |
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW) | |
up_block = HunyuanVideoUpBlock3D( | |
num_layers=self.layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
add_upsample=bool(add_spatial_upsample or add_time_upsample), | |
upsample_scale_factor=upsample_scale_factor, | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[0], out_channels, kernel_size=3) | |
self.gradient_checkpointing = False | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.conv_in(hidden_states) | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs | |
) | |
for up_block in self.up_blocks: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), hidden_states, **ckpt_kwargs | |
) | |
else: | |
hidden_states = self.mid_block(hidden_states) | |
for up_block in self.up_blocks: | |
hidden_states = up_block(hidden_states) | |
# post-process | |
hidden_states = self.conv_norm_out(hidden_states) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class AutoencoderKLHunyuanVideo(ModelMixin, ConfigMixin): | |
r""" | |
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. | |
Introduced in [HunyuanVideo](https://huggingface.co/papers/2412.03603). | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
latent_channels: int = 16, | |
down_block_types: Tuple[str, ...] = ( | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
), | |
up_block_types: Tuple[str, ...] = ( | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
), | |
block_out_channels: Tuple[int] = (128, 256, 512, 512), | |
layers_per_block: int = 2, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
scaling_factor: float = 0.476986, | |
spatial_compression_ratio: int = 8, | |
temporal_compression_ratio: int = 4, | |
mid_block_add_attention: bool = True, | |
) -> None: | |
super().__init__() | |
self.time_compression_ratio = temporal_compression_ratio | |
self.encoder = HunyuanVideoEncoder3D( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
norm_num_groups=norm_num_groups, | |
act_fn=act_fn, | |
double_z=True, | |
mid_block_add_attention=mid_block_add_attention, | |
temporal_compression_ratio=temporal_compression_ratio, | |
spatial_compression_ratio=spatial_compression_ratio, | |
) | |
self.decoder = HunyuanVideoDecoder3D( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
norm_num_groups=norm_num_groups, | |
act_fn=act_fn, | |
time_compression_ratio=temporal_compression_ratio, | |
spatial_compression_ratio=spatial_compression_ratio, | |
mid_block_add_attention=mid_block_add_attention, | |
) | |
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1) | |
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1) | |
self.spatial_compression_ratio = spatial_compression_ratio | |
self.temporal_compression_ratio = temporal_compression_ratio | |
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension | |
# to perform decoding of a single video latent at a time. | |
self.use_slicing = False | |
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent | |
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the | |
# intermediate tiles together, the memory requirement can be lowered. | |
self.use_tiling = False | |
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames | |
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered. | |
self.use_framewise_encoding = True | |
self.use_framewise_decoding = True | |
# The minimal tile height and width for spatial tiling to be used | |
self.tile_sample_min_height = 256 | |
self.tile_sample_min_width = 256 | |
self.tile_sample_min_num_frames = 16 | |
# The minimal distance between two spatial tiles | |
self.tile_sample_stride_height = 192 | |
self.tile_sample_stride_width = 192 | |
self.tile_sample_stride_num_frames = 12 | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (HunyuanVideoEncoder3D, HunyuanVideoDecoder3D)): | |
module.gradient_checkpointing = value | |
def enable_tiling( | |
self, | |
tile_sample_min_height: Optional[int] = None, | |
tile_sample_min_width: Optional[int] = None, | |
tile_sample_min_num_frames: Optional[int] = None, | |
tile_sample_stride_height: Optional[float] = None, | |
tile_sample_stride_width: Optional[float] = None, | |
tile_sample_stride_num_frames: Optional[float] = None, | |
) -> None: | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
Args: | |
tile_sample_min_height (`int`, *optional*): | |
The minimum height required for a sample to be separated into tiles across the height dimension. | |
tile_sample_min_width (`int`, *optional*): | |
The minimum width required for a sample to be separated into tiles across the width dimension. | |
tile_sample_min_num_frames (`int`, *optional*): | |
The minimum number of frames required for a sample to be separated into tiles across the frame | |
dimension. | |
tile_sample_stride_height (`int`, *optional*): | |
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are | |
no tiling artifacts produced across the height dimension. | |
tile_sample_stride_width (`int`, *optional*): | |
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling | |
artifacts produced across the width dimension. | |
tile_sample_stride_num_frames (`int`, *optional*): | |
The stride between two consecutive frame tiles. This is to ensure that there are no tiling artifacts | |
produced across the frame dimension. | |
""" | |
self.use_tiling = True | |
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height | |
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width | |
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames | |
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height | |
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width | |
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames | |
def disable_tiling(self) -> None: | |
r""" | |
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_tiling = False | |
def enable_slicing(self) -> None: | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_slicing = True | |
def disable_slicing(self) -> None: | |
r""" | |
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_slicing = False | |
def _encode(self, x: torch.Tensor) -> torch.Tensor: | |
batch_size, num_channels, num_frames, height, width = x.shape | |
if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames: | |
return self._temporal_tiled_encode(x) | |
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): | |
return self.tiled_encode(x) | |
x = self.encoder(x) | |
enc = self.quant_conv(x) | |
return enc | |
def encode( | |
self, x: torch.Tensor, return_dict: bool = True | |
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
r""" | |
Encode a batch of images into latents. | |
Args: | |
x (`torch.Tensor`): Input batch of images. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
Returns: | |
The latent representations of the encoded videos. If `return_dict` is True, a | |
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
""" | |
if self.use_slicing and x.shape[0] > 1: | |
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] | |
h = torch.cat(encoded_slices) | |
else: | |
h = self._encode(x) | |
posterior = DiagonalGaussianDistribution(h) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
batch_size, num_channels, num_frames, height, width = z.shape | |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio | |
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames: | |
return self._temporal_tiled_decode(z, return_dict=return_dict) | |
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height): | |
return self.tiled_decode(z, return_dict=return_dict) | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Decode a batch of images. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
if self.use_slicing and z.shape[0] > 1: | |
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
decoded = torch.cat(decoded_slices) | |
else: | |
decoded = self._decode(z).sample | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( | |
y / blend_extent | |
) | |
return b | |
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( | |
x / blend_extent | |
) | |
return b | |
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * ( | |
x / blend_extent | |
) | |
return b | |
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: | |
r"""Encode a batch of images using a tiled encoder. | |
Args: | |
x (`torch.Tensor`): Input batch of videos. | |
Returns: | |
`torch.Tensor`: | |
The latent representation of the encoded videos. | |
""" | |
batch_size, num_channels, num_frames, height, width = x.shape | |
latent_height = height // self.spatial_compression_ratio | |
latent_width = width // self.spatial_compression_ratio | |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio | |
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio | |
blend_height = tile_latent_min_height - tile_latent_stride_height | |
blend_width = tile_latent_min_width - tile_latent_stride_width | |
# Split x into overlapping tiles and encode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, height, self.tile_sample_stride_height): | |
row = [] | |
for j in range(0, width, self.tile_sample_stride_width): | |
tile = x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width] | |
tile = self.encoder(tile) | |
tile = self.quant_conv(tile) | |
row.append(tile) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_height) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_width) | |
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width]) | |
result_rows.append(torch.cat(result_row, dim=4)) | |
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width] | |
return enc | |
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Decode a batch of images using a tiled decoder. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
batch_size, num_channels, num_frames, height, width = z.shape | |
sample_height = height * self.spatial_compression_ratio | |
sample_width = width * self.spatial_compression_ratio | |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio | |
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio | |
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height | |
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width | |
# Split z into overlapping tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, height, tile_latent_stride_height): | |
row = [] | |
for j in range(0, width, tile_latent_stride_width): | |
tile = z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width] | |
tile = self.post_quant_conv(tile) | |
decoded = self.decoder(tile) | |
row.append(decoded) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_height) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_width) | |
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width]) | |
result_rows.append(torch.cat(result_row, dim=-1)) | |
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width] | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: | |
batch_size, num_channels, num_frames, height, width = x.shape | |
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1 | |
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio | |
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames | |
row = [] | |
for i in range(0, num_frames, self.tile_sample_stride_num_frames): | |
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :] | |
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width): | |
tile = self.tiled_encode(tile) | |
else: | |
tile = self.encoder(tile) | |
tile = self.quant_conv(tile) | |
if i > 0: | |
tile = tile[:, :, 1:, :, :] | |
row.append(tile) | |
result_row = [] | |
for i, tile in enumerate(row): | |
if i > 0: | |
tile = self.blend_t(row[i - 1], tile, blend_num_frames) | |
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :]) | |
else: | |
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :]) | |
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames] | |
return enc | |
def _temporal_tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
batch_size, num_channels, num_frames, height, width = z.shape | |
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 | |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio | |
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames | |
row = [] | |
for i in range(0, num_frames, tile_latent_stride_num_frames): | |
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :] | |
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height): | |
decoded = self.tiled_decode(tile, return_dict=True).sample | |
else: | |
tile = self.post_quant_conv(tile) | |
decoded = self.decoder(tile) | |
if i > 0: | |
decoded = decoded[:, :, 1:, :, :] | |
row.append(decoded) | |
result_row = [] | |
for i, tile in enumerate(row): | |
if i > 0: | |
tile = self.blend_t(row[i - 1], tile, blend_num_frames) | |
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames, :, :]) | |
else: | |
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :]) | |
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames] | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def forward( | |
self, | |
sample: torch.Tensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Args: | |
sample (`torch.Tensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z, return_dict=return_dict) | |
return dec | |