Spaces:
Sleeping
Sleeping
Update app.py
#1
by
Rozeeeee
- opened
app.py
CHANGED
@@ -2,113 +2,111 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import requests
|
4 |
import plotly.express as px
|
5 |
-
import matplotlib.font_manager as fm
|
6 |
-
import matplotlib as mpl
|
7 |
import io
|
8 |
-
import time
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
"溫室氣體": "https://mopsfin.twse.com.tw/opendata/t187ap46_L_1.csv",
|
16 |
-
"能源": "https://mopsfin.twse.com.tw/opendata/t187ap46_O_2.csv",
|
17 |
-
"董事會揭露": "https://mopsfin.twse.com.tw/opendata/t187ap46_L_6.csv"
|
18 |
-
}
|
19 |
-
|
20 |
-
# 下載並加載 CSV 文件到 DataFrame 的函數
|
21 |
-
@st.cache_data
|
22 |
-
def load_data(url):
|
23 |
response = requests.get(url)
|
24 |
response.encoding = 'utf-8'
|
25 |
df = pd.read_csv(io.StringIO(response.text), encoding='utf-8')
|
26 |
-
df = df.fillna(0)
|
27 |
return df
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
#
|
54 |
-
progress_bar = st.progress(0)
|
55 |
-
for i in range(100):
|
56 |
-
time.sleep(0.01)
|
57 |
-
progress_bar.progress(i + 1)
|
58 |
|
59 |
-
|
60 |
-
tab1, tab2 = st.tabs(["圓餅圖", "長條圖"])
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import requests
|
4 |
import plotly.express as px
|
|
|
|
|
5 |
import io
|
|
|
6 |
|
7 |
+
# 設置顏色主題
|
8 |
+
theme = px.colors.qualitative.Bold
|
9 |
|
10 |
+
# 下載並載入 CSV 數據
|
11 |
+
def download_and_load_csv(url):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
response = requests.get(url)
|
13 |
response.encoding = 'utf-8'
|
14 |
df = pd.read_csv(io.StringIO(response.text), encoding='utf-8')
|
15 |
+
df = df.fillna(0) # 避免 NaN 錯誤
|
16 |
return df
|
17 |
|
18 |
+
# 美化圖表
|
19 |
+
def beautify_chart(fig):
|
20 |
+
fig.update_layout(
|
21 |
+
font_family="Arial",
|
22 |
+
font_color="#444",
|
23 |
+
title_font_family="Arial",
|
24 |
+
title_font_color="#000",
|
25 |
+
legend_title_font_color="#000",
|
26 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
27 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
28 |
+
)
|
29 |
+
fig.update_xaxes(showline=True, linewidth=2, linecolor='lightgray', gridcolor='lightgray')
|
30 |
+
fig.update_yaxes(showline=True, linewidth=2, linecolor='lightgray', gridcolor='lightgray')
|
31 |
+
return fig
|
32 |
|
33 |
+
# **生成 Plotly 圖表**
|
34 |
+
def generate_plots(df, df_name, selected_columns, chart_type):
|
35 |
+
selected_columns = list(selected_columns) # 確保是列表
|
36 |
|
37 |
+
if not selected_columns:
|
38 |
+
st.error("❌ 沒有選擇數據欄位,請至少選擇一個!")
|
39 |
+
return
|
40 |
+
|
41 |
+
if "公司名稱" not in df.columns:
|
42 |
+
st.error("❌ 缺少 公司名稱 欄位,請確認數據格式!")
|
43 |
+
return
|
44 |
|
45 |
+
# ✅ **確保所有 y 軸數據與 x 軸 (公司名稱) 長度一致**
|
46 |
+
df = df.dropna(subset=["公司名稱"] + selected_columns) # **移除 NaN 確保長度相同**
|
47 |
+
df[selected_columns] = df[selected_columns].apply(pd.to_numeric, errors='coerce') # **轉換數據類型**
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
valid_columns = [col for col in selected_columns if col in df.columns and len(df[col]) == len(df["公司名稱"])]
|
|
|
50 |
|
51 |
+
if not valid_columns:
|
52 |
+
st.error(f"❌ 選擇的欄位長度與 公司名稱 不匹配,請檢查數據!\n"
|
53 |
+
f"📊 公司名稱 長度: {len(df['公司名稱'])}\n"
|
54 |
+
f"🟢 可用欄位: {valid_columns}")
|
55 |
+
return
|
56 |
+
|
57 |
+
with st.expander(f"📊 顯示 {df_name} 圖表"):
|
58 |
+
st.subheader(f"{df_name} - {chart_type} 圖")
|
59 |
+
|
60 |
+
# **根據選擇的圖表類型來繪製**
|
61 |
+
if chart_type == "折線圖":
|
62 |
+
fig = px.line(df, x="公司名稱", y=valid_columns, title=f"{df_name} - 折線圖", color_discrete_sequence=theme)
|
63 |
|
64 |
+
elif chart_type == "散點圖":
|
65 |
+
fig = px.scatter(df, x="公司名稱", y=valid_columns, title=f"{df_name} - 散點圖", color_discrete_sequence=theme)
|
66 |
+
|
67 |
+
elif chart_type == "長條圖":
|
68 |
+
fig = px.bar(df, x="公司名稱", y=valid_columns, title=f"{df_name} - 長條圖", color_discrete_sequence=theme)
|
69 |
+
|
70 |
+
elif chart_type == "餅圖":
|
71 |
+
total_emissions = df.groupby("公司名稱")[valid_columns].sum().reset_index()
|
72 |
+
total_emissions = total_emissions.melt(id_vars=["公司名稱"], value_vars=valid_columns, var_name="排放類型", value_name="總排放量")
|
73 |
+
fig = px.pie(total_emissions, values='總排放量', names='公司名稱', title=f"{df_name} - 餅圖", color_discrete_sequence=theme, hole=0.3)
|
74 |
+
fig.update_traces(textposition='inside', textinfo='percent+label')
|
75 |
+
|
76 |
+
fig = beautify_chart(fig)
|
77 |
+
st.plotly_chart(fig, use_container_width=True) # ✅ **讓圖表自適應畫面**
|
78 |
+
|
79 |
+
# **下載數據**
|
80 |
+
urls = [
|
81 |
+
"https://mopsfin.twse.com.tw/opendata/t187ap46_L_1.csv",
|
82 |
+
"https://mopsfin.twse.com.tw/opendata/t187ap46_O_2.csv",
|
83 |
+
"https://mopsfin.twse.com.tw/opendata/t187ap46_L_6.csv"
|
84 |
+
]
|
85 |
+
|
86 |
+
dfs = [download_and_load_csv(url) for url in urls]
|
87 |
+
combined_df = pd.concat(dfs, ignore_index=True).fillna(0) # 合併數據並填充 NaN 值
|
88 |
+
|
89 |
+
# **再次填充 NaN 值**
|
90 |
+
combined_df = combined_df.fillna(0)
|
91 |
+
|
92 |
+
# **只顯示前300筆數據**
|
93 |
+
combined_df = combined_df.head(300)
|
94 |
+
|
95 |
+
# **Streamlit UI**
|
96 |
+
st.title("📊 台灣企業 ESG 數據分析")
|
97 |
+
|
98 |
+
st.subheader("📂 數據預覽")
|
99 |
+
st.dataframe(combined_df)
|
100 |
+
|
101 |
+
# **選擇數據欄位**
|
102 |
+
emission_columns = ["範疇一排放量(噸CO2e)", "範疇二排放量(噸CO2e)", "範疇三排放量(噸CO2e)"]
|
103 |
+
selected_columns = st.multiselect("選擇要顯示的排放類別", emission_columns, default=emission_columns[:1])
|
104 |
+
|
105 |
+
# **選擇圖表類型**
|
106 |
+
chart_type = st.selectbox("選擇圖表類型", ["折線圖", "散點圖", "長條圖", "餅圖"])
|
107 |
+
|
108 |
+
# **生成圖表**
|
109 |
+
if selected_columns:
|
110 |
+
generate_plots(combined_df, "綜合數據", selected_columns, chart_type)
|
111 |
+
else:
|
112 |
+
st.write("⚠️ 請選擇至少一個排放類別來顯示圖表。")
|