Spaces:
Sleeping
Sleeping
File size: 4,007 Bytes
605e3c4 1835df3 605e3c4 bbb0a94 605e3c4 1835df3 605e3c4 bbb0a94 1835df3 605e3c4 1835df3 605e3c4 1835df3 bbb0a94 1835df3 bbb0a94 1835df3 bbb0a94 1835df3 5c0cabb 1835df3 5c0cabb 1835df3 5c0cabb 1835df3 5c0cabb 1835df3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
import numpy as np
# Function to process data and return feature importances and correlation matrix
def calculate_importances(file):
# Read uploaded file
heart_df = pd.read_csv(file)
# Set X and y
X = heart_df.drop('target', axis=1)
y = heart_df['target']
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
# Initialize models
rf_model = RandomForestClassifier(random_state=42)
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
cart_model = DecisionTreeClassifier(random_state=42)
# Train models
rf_model.fit(X_train, y_train)
xgb_model.fit(X_train, y_train)
cart_model.fit(X_train, y_train)
# Get feature importances
rf_importances = rf_model.feature_importances_
xgb_importances = xgb_model.feature_importances_
cart_importances = cart_model.feature_importances_
feature_names = X.columns
# Prepare DataFrame
rf_importance = {'Feature': feature_names, 'Random Forest': rf_importances}
xgb_importance = {'Feature': feature_names, 'XGBoost': xgb_importances}
cart_importance = {'Feature': feature_names, 'CART': cart_importances}
# Create DataFrames
rf_df = pd.DataFrame(rf_importance)
xgb_df = pd.DataFrame(xgb_importance)
cart_df = pd.DataFrame(cart_importance)
# Merge DataFrames
importance_df = rf_df.merge(xgb_df, on='Feature').merge(cart_df, on='Feature')
# Correlation Matrix
corr_matrix = heart_df.corr()
# Save to Excel
file_name = 'feature_importances.xlsx'
importance_df.to_excel(file_name, index=False)
return file_name, importance_df, corr_matrix, rf_importances, xgb_importances, cart_importances, feature_names
# Streamlit interface
st.title("Feature Importance Calculation")
# File upload
uploaded_file = st.file_uploader("Upload heart.csv file", type=['csv'])
if uploaded_file is not None:
# Process the file and get results
excel_file, importance_df, corr_matrix, rf_importances, xgb_importances, cart_importances, feature_names = calculate_importances(uploaded_file)
# Display a preview of the DataFrame
st.write("Feature Importances (Preview):")
st.dataframe(importance_df.head())
# Provide a link to download the Excel file
with open(excel_file, "rb") as file:
btn = st.download_button(
label="Download Excel File",
data=file,
file_name=excel_file,
mime="application/vnd.ms-excel"
)
# Plot and display the Correlation Matrix
st.write("Correlation Matrix:")
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", cbar=True)
st.pyplot(plt)
# Plot and display the Feature Importance (Random Forest)
st.write("Random Forest Feature Importance:")
fig_rf, ax_rf = plt.subplots()
sns.barplot(x=rf_importances, y=feature_names, ax=ax_rf)
ax_rf.set_title('Random Forest Feature Importances')
st.pyplot(fig_rf)
# Plot and display the Feature Importance (XGBoost)
st.write("XGBoost Feature Importance:")
fig_xgb, ax_xgb = plt.subplots()
sns.barplot(x=xgb_importances, y=feature_names, ax=ax_xgb)
ax_xgb.set_title('XGBoost Feature Importances')
st.pyplot(fig_xgb)
# Plot and display the Feature Importance (Decision Tree - CART)
st.write("CART (Decision Tree) Feature Importance:")
fig_cart, ax_cart = plt.subplots()
sns.barplot(x=cart_importances, y=feature_names, ax=ax_cart)
ax_cart.set_title('CART (Decision Tree) Feature Importances')
st.pyplot(fig_cart)
|