Spaces:
Paused
Paused
import re | |
import uuid | |
import pandas as pd | |
import streamlit as st | |
import re | |
import matplotlib.pyplot as plt | |
import subprocess | |
import sys | |
import io | |
from utils.default_values import get_system_prompt, get_guidelines_dict | |
from utils.epfl_meditron_utils import get_llm_response, gptq_model_options | |
from utils.openai_utils import get_available_engines, get_search_query_type_options | |
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay | |
from sklearn.metrics import classification_report | |
DATA_FOLDER = "data/" | |
POC_VERSION = "0.1.0" | |
MAX_QUESTIONS = 10 | |
AVAILABLE_LANGUAGES = ["DE", "EN", "FR"] | |
st.set_page_config(page_title='Medgate Whisper PoC', page_icon='public/medgate.png') | |
# Azure apparently truncates message if longer than 200, see | |
MAX_SYSTEM_MESSAGE_TOKENS = 200 | |
def format_question(q): | |
res = q | |
# Remove numerical prefixes, if any, e.g. '1. [...]' | |
if re.match(r'^[0-9].\s', q): | |
res = res[3:] | |
# Replace doc reference by doc name | |
if len(st.session_state["citations"]) > 0: | |
for source_ref in re.findall(r'\[doc[0-9]+\]', res): | |
citation_number = int(re.findall(r'[0-9]+', source_ref)[0]) | |
citation_index = citation_number - 1 if citation_number > 0 else 0 | |
citation = st.session_state["citations"][citation_index] | |
source_title = citation["title"] | |
res = res.replace(source_ref, '[' + source_title + ']') | |
return res.strip() | |
def get_text_from_row(text): | |
res = str(text) | |
if res == "nan": | |
return "" | |
return res | |
def get_questions_from_df(df, lang, test_scenario_name): | |
questions = [] | |
for i, row in df.iterrows(): | |
questions.append({ | |
"question": row[lang + ": Fragen"], | |
"answer": get_text_from_row(row[test_scenario_name]), | |
"question_id": uuid.uuid4() | |
}) | |
return questions | |
def get_questions(df, lead_symptom, lang, test_scenario_name): | |
print(str(st.session_state["lead_symptom"]) + " -> " + lead_symptom) | |
print(str(st.session_state["scenario_name"]) + " -> " + test_scenario_name) | |
if st.session_state["lead_symptom"] != lead_symptom or st.session_state["scenario_name"] != test_scenario_name: | |
st.session_state["lead_symptom"] = lead_symptom | |
st.session_state["scenario_name"] = test_scenario_name | |
symptom_col_name = st.session_state["language"] + ": Symptome" | |
df_questions = df[(df[symptom_col_name] == lead_symptom)] | |
st.session_state["questions"] = get_questions_from_df(df_questions, lang, test_scenario_name) | |
return st.session_state["questions"] | |
def display_streamlit_sidebar(): | |
st.sidebar.title("Local LLM PoC " + str(POC_VERSION)) | |
st.sidebar.write('**Parameters**') | |
form = st.sidebar.form("config_form", clear_on_submit=True) | |
model_name_or_path = form.selectbox("Select model", gptq_model_options()) | |
temperature = form.slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=st.session_state["temperature"]) | |
do_sample = form.checkbox('do_sample', value=st.session_state["do_sample"]) | |
top_p = form.slider(label="top_p", min_value=0.0, max_value=1.0, step=0.01, value=st.session_state["top_p"]) | |
top_k = form.slider(label="top_k", min_value=1, max_value=1000, step=1, value=st.session_state["top_k"]) | |
max_new_tokens = form.slider(label="max_new_tokens", min_value=32, max_value=512, step=1, value=st.session_state["max_new_tokens"]) | |
repetition_penalty = form.slider(label="repetition_penalty", min_value=0.0, max_value=5.0, step=0.01, value=st.session_state["repetition_penalty"]) | |
submitted = form.form_submit_button("Start session") | |
if submitted and not st.session_state['session_started']: | |
print('Parameters updated...') | |
st.session_state['session_started'] = True | |
st.session_state["session_events"] = [] | |
st.session_state["model_name_or_path"] = model_name_or_path | |
st.session_state["temperature"] = temperature | |
st.session_state["do_sample"] = do_sample | |
st.session_state["top_p"] = top_p | |
st.session_state["top_k"] = top_k | |
st.session_state["max_new_tokens"] = max_new_tokens | |
st.session_state["repetition_penalty"] = repetition_penalty | |
st.rerun() | |
def init_session_state(): | |
print('init_session_state()') | |
st.session_state['session_started'] = False | |
st.session_state["session_events"] = [] | |
st.session_state["model_name_or_path"] = "TheBloke/meditron-7B-GPTQ" | |
st.session_state["temperature"] = 0.01 | |
st.session_state["do_sample"] = True | |
st.session_state["top_p"] = 0.95 | |
st.session_state["top_k"] = 40 | |
st.session_state["max_new_tokens"] = 512 | |
st.session_state["repetition_penalty"] = 1.1 | |
st.session_state["system_prompt"] = "You are a medical expert that provides answers for a medically trained audience" | |
def get_genders(): | |
return ['Male', 'Female'] | |
def display_session_overview(): | |
st.subheader('History of LLM queries') | |
st.write(st.session_state["llm_messages"]) | |
st.subheader("Session costs overview") | |
df_session_overview = pd.DataFrame.from_dict(st.session_state["session_events"]) | |
st.write(df_session_overview) | |
if "prompt_tokens" in df_session_overview: | |
prompt_tokens = df_session_overview["prompt_tokens"].sum() | |
st.write("Prompt tokens: " + str(prompt_tokens)) | |
prompt_cost = df_session_overview["prompt_cost_chf"].sum() | |
st.write("Prompt CHF: " + str(prompt_cost)) | |
completion_tokens = df_session_overview["completion_tokens"].sum() | |
st.write("Completion tokens: " + str(completion_tokens)) | |
completion_cost = df_session_overview["completion_cost_chf"].sum() | |
st.write("Completion CHF: " + str(completion_cost)) | |
completion_cost = df_session_overview["total_cost_chf"].sum() | |
st.write("Total costs CHF: " + str(completion_cost)) | |
total_time = df_session_overview["response_time"].sum() | |
st.write("Total compute time (ms): " + str(total_time)) | |
def plot_report(title, expected, predicted, display_labels): | |
st.markdown('#### ' + title) | |
conf_matrix = confusion_matrix(expected, predicted, labels=display_labels) | |
conf_matrix_plot = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=display_labels) | |
conf_matrix_plot.plot() | |
st.pyplot(plt.gcf()) | |
report = classification_report(expected, predicted, output_dict=True) | |
df_report = pd.DataFrame(report).transpose() | |
st.write(df_report) | |
df_rp = df_report | |
df_rp = df_rp.drop('support', axis=1) | |
df_rp = df_rp.drop(['accuracy', 'macro avg', 'weighted avg']) | |
try: | |
ax = df_rp.plot(kind="bar", legend=True) | |
for container in ax.containers: | |
ax.bar_label(container, fontsize=7) | |
plt.xticks(rotation=45) | |
plt.legend(loc=(1.04, 0)) | |
st.pyplot(plt.gcf()) | |
except Exception as e: | |
# Out of bounds | |
pass | |
def get_prompt_format(model_name): | |
if model_name == "TheBloke/Llama-2-13B-chat-GPTQ": | |
return '''[INST] <<SYS>> | |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. | |
<</SYS>> | |
{prompt}[/INST] | |
''' | |
if model_name == "TheBloke/Llama-2-7B-Chat-GPTQ": | |
return "[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n{prompt}[/INST]" | |
if model_name == "TheBloke/meditron-7B-GPTQ" or model_name == "TheBloke/meditron-70B-GPTQ": | |
return '''<|im_start|>system | |
{system_message}<|im_end|> | |
<|im_start|>user | |
{prompt}<|im_end|> | |
<|im_start|>assistant''' | |
return "" | |
def format_prompt(template, system_message, prompt): | |
if template == "": | |
return f"{system_message} {prompt}" | |
return template.format(system_message=system_message, prompt=prompt) | |
def display_llm_output(): | |
st.header("LLM") | |
form = st.form('llm') | |
prompt_format_str = get_prompt_format(st.session_state["model_name_or_path"]) | |
prompt_format = form.text_area('Prompt format', value=prompt_format_str) | |
system_prompt = ""#form.text_area('System prompt', value=st.session_state["system_prompt"]) | |
prompt = form.text_area('Prompt', value=st.session_state["prompt"]) | |
submitted = form.form_submit_button('Submit') | |
if submitted: | |
formatted_prompt = format_prompt(prompt_format, system_prompt, prompt) | |
print(f"Formatted prompt: {format_prompt}") | |
llm_response = get_llm_response( | |
st.session_state["model_name"], | |
st.session_state["temperature"], | |
st.session_state["do_sample"], | |
st.session_state["top_p"], | |
st.session_state["top_k"], | |
st.session_state["max_new_tokens"], | |
st.session_state["repetition_penalty"], | |
formatted_prompt) | |
st.write(llm_response) | |
st.write('Done displaying LLM response') | |
def main(): | |
print('Running Local LLM PoC Streamlit app...') | |
session_inactive_info = st.empty() | |
if "session_started" not in st.session_state or not st.session_state["session_started"]: | |
init_session_state() | |
display_streamlit_sidebar() | |
else: | |
display_streamlit_sidebar() | |
session_inactive_info.empty() | |
display_llm_output() | |
display_session_overview() | |
if __name__ == '__main__': | |
main() | |