Akash Garg
adding cube sources
616f571
import math
import torch
import torch.nn as nn
from cube3d.model.transformers.norm import LayerNorm, RMSNorm
def init_linear(module, embed_dim: int):
"""
Initializes the weights and biases of a given linear module.
Args:
module (nn.Module): The module to initialize. Expected to be an instance of nn.Linear.
embed_dim (int): The embedding dimension used to calculate the standard deviation
for weight initialization.
Returns:
None
"""
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=math.sqrt(1.0 / embed_dim))
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
def init_tfixup(module: nn.Module, num_layers: int):
"""Special initialization from https://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf
Args:
module (nn.Module): decoder/encoder module
num_layers (int): number of layers in the module
"""
with torch.no_grad():
for pn, p in module.named_parameters():
if (
pn.endswith("c_proj.weight")
or pn.endswith("up_proj.weight")
or pn.endswith("down_proj.weight")
):
p *= (4 * num_layers) ** (-0.25)
elif pn.endswith("c_v.weight"):
p *= (4 * num_layers) ** (-0.25) * math.sqrt(2)
class MLP(nn.Module):
def __init__(self, embed_dim, hidden_dim, bias=True, approximate="none"):
"""
MLP with GELU activation function."
"""
super().__init__()
self.up_proj = nn.Linear(embed_dim, hidden_dim, bias=bias)
self.down_proj = nn.Linear(hidden_dim, embed_dim, bias=bias)
self.act_fn = nn.GELU(approximate=approximate)
def forward(self, x):
return self.down_proj(self.act_fn(self.up_proj(x)))
class SelfAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
eps: float = 1e-6,
):
"""
Initializes the self attention mechanism.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
bias (bool, optional): Whether to include bias terms in the linear layers. Defaults to True.
eps (float, optional): A small value added for numerical stability. Defaults to 1e-6.
Raises:
AssertionError: If `embed_dim` is not divisible by `num_heads`.
"""
super().__init__()
assert embed_dim % num_heads == 0
self.num_heads = num_heads
self.c_qk = nn.Linear(embed_dim, 2 * embed_dim, bias=bias)
self.c_v = nn.Linear(embed_dim, embed_dim, bias=bias)
self.c_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
head_dim = embed_dim // num_heads
self.q_norm = RMSNorm(head_dim)
self.k_norm = RMSNorm(head_dim)
def forward(self, x, attn_mask=None, is_causal: bool = False):
"""
Performs the forward pass of the attention mechanism.
Args:
x (torch.Tensor): Input tensor.
attn_mask (Optional[torch.Tensor]): Attention mask to apply. Default is None.
is_causal (bool): If True, applies a causal mask to prevent attending to future positions.
Default is False.
Returns:
torch.Tensor: Output tensor after applying
the attention mechanism and projection.
"""
b, l, d = x.shape
q, k = self.c_qk(x).chunk(2, dim=-1)
v = self.c_v(x)
q = q.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
k = k.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
v = v.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
q = self.q_norm(q)
k = self.k_norm(k)
is_causal = is_causal and attn_mask is None
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=0.0,
is_causal=is_causal,
)
y = y.transpose(1, 2).contiguous().view(b, l, d)
y = self.c_proj(y)
return y
class CrossAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
q_dim=None,
kv_dim=None,
bias: bool = True,
):
"""
Initializes the cross attention mechanism.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
q_dim (int, optional): The dimensionality of the query input. Defaults to `embed_dim`.
kv_dim (int, optional): The dimensionality of the key and value inputs. Defaults to `embed_dim`.
bias (bool, optional): Whether to include a bias term in the linear projections. Defaults to True.
Raises:
AssertionError: If `embed_dim` is not divisible by `num_heads`.
"""
super().__init__()
assert embed_dim % num_heads == 0
q_dim = q_dim or embed_dim
kv_dim = kv_dim or embed_dim
self.c_q = nn.Linear(q_dim, embed_dim, bias=bias)
self.c_k = nn.Linear(kv_dim, embed_dim, bias=bias)
self.c_v = nn.Linear(kv_dim, embed_dim, bias=bias)
self.c_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.num_heads = num_heads
def forward(self, x, c, attn_mask=None, is_causal: bool = False):
"""
Forward pass for the attention mechanism.
Args:
x (torch.Tensor): Input tensor of shape.
c (torch.Tensor): Context tensor.
attn_mask (torch.Tensor, optional): Attention mask.
Defaults to None.
is_causal (bool, optional): Whether to apply causal masking. Defaults to False.
Returns:
torch.Tensor: Output tensor.
"""
q, k = self.c_q(x), self.c_k(c)
v = self.c_v(c)
b, l, d = q.shape
s = k.shape[1]
q = q.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
k = k.view(b, s, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
v = v.view(b, s, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=0.0,
is_causal=(attn_mask is not None) and is_causal,
)
y = y.transpose(1, 2).contiguous().view(b, l, d)
y = self.c_proj(y)
return y
class EncoderLayer(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
eps: float = 1e-6,
) -> None:
"""
Initializes the EncoderLayer module.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
bias (bool, optional): Whether to include bias terms in the layers. Defaults to True.
eps (float, optional): A small value added for numerical stability in normalization layers. Defaults to 1e-6.
"""
super().__init__()
self.ln_1 = LayerNorm(embed_dim, elementwise_affine=False, eps=eps)
self.attn = SelfAttention(embed_dim, num_heads, bias=bias, eps=eps)
self.ln_2 = LayerNorm(embed_dim, elementwise_affine=False, eps=eps)
self.mlp = MLP(embed_dim=embed_dim, hidden_dim=embed_dim * 4, bias=bias)
def forward(self, x, attn_mask=None, is_causal: bool = False):
"""
Performs the forward pass of the transformer block.
Args:
x (torch.Tensor): The input tensor.
attn_mask (torch.Tensor, optional): An optional attention mask tensor to apply during the
attention computation. Default is None.
is_causal (bool, optional): If True, applies a causal mask to prevent attention to future
positions. Default is False.
Returns:
torch.Tensor: The output tensor of the same shape as the input.
"""
x = x + self.attn(self.ln_1(x), attn_mask=attn_mask, is_causal=is_causal)
x = x + self.mlp(self.ln_2(x))
return x
class EncoderCrossAttentionLayer(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
q_dim=None,
kv_dim=None,
bias: bool = True,
eps: float = 1e-6,
) -> None:
"""
Initializes the EncoderAttentionLayer module with cross-attention,
and a feed-forward MLP.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
q_dim (int, optional): Dimensionality of the query input. Defaults to `embed_dim`.
kv_dim (int, optional): Dimensionality of the key and value inputs. Defaults to `embed_dim`.
bias (bool, optional): Whether to include bias terms in the layers. Defaults to True.
eps (float, optional): A small value added to the denominator for numerical stability
in layer normalization. Defaults to 1e-6.
"""
super().__init__()
q_dim = q_dim or embed_dim
kv_dim = kv_dim or embed_dim
self.attn = CrossAttention(
embed_dim,
num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
bias=bias,
)
self.ln_1 = LayerNorm(q_dim, elementwise_affine=False, eps=eps)
self.ln_2 = LayerNorm(kv_dim, elementwise_affine=False, eps=eps)
self.ln_f = LayerNorm(embed_dim, elementwise_affine=False, eps=eps)
self.mlp = MLP(embed_dim=embed_dim, hidden_dim=embed_dim * 4, bias=bias)
def forward(self, x, c, attn_mask=None, is_causal: bool = False):
"""
Forward pass for the attention mechanism.
Args:
x (torch.Tensor): The input tensor to the attention mechanism.
c (torch.Tensor): The context tensor used for cross-attention.
attn_mask (torch.Tensor, optional): An optional attention mask to control
which positions can attend to others. Defaults to None.
is_causal (bool, optional): If True, applies a causal mask to prevent
attending to future positions. Defaults to False.
Returns:
torch.Tensor: The output tensor after applying attention and MLP layers.
"""
x = x + self.attn(
self.ln_1(x), self.ln_2(c), attn_mask=attn_mask, is_causal=is_causal
)
x = x + self.mlp(self.ln_f(x))
return x