Spaces:
Sleeping
Sleeping
import os | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
import umap | |
import matplotlib.pyplot as plt | |
import plotly.express as px | |
# Step 1: Load skills from all files in a specific date folder | |
def load_skills_from_date(base_folder, date): | |
date_folder = os.path.join(base_folder, date) | |
all_skills = set() # To ensure unique skills | |
if os.path.exists(date_folder) and os.path.isdir(date_folder): | |
for file_name in os.listdir(date_folder): | |
file_path = os.path.join(date_folder, file_name) | |
if file_name.endswith(".txt"): | |
with open(file_path, 'r', encoding='utf-8') as f: | |
all_skills.update(line.strip() for line in f if line.strip()) | |
return list(all_skills) | |
# Step 2: Generate embeddings using a pretrained model | |
def generate_embeddings(skills, model_name="paraphrase-MiniLM-L3-v2"): | |
model = SentenceTransformer(model_name) | |
embeddings = model.encode(skills, convert_to_numpy=True) | |
return embeddings | |
# Step 3: Reduce dimensionality using UMAP | |
def reduce_dimensions(embeddings, n_components=2): | |
reducer = umap.UMAP(n_components=n_components, random_state=42) | |
reduced_embeddings = reducer.fit_transform(embeddings) | |
return reduced_embeddings | |
# Step 4: Visualize the reduced embeddings (2D) | |
def visualize_embeddings_2d(reduced_embeddings, skills, output_folder, date): | |
plt.figure(figsize=(10, 8)) | |
plt.scatter(reduced_embeddings[:, 0], reduced_embeddings[:, 1], s=50, alpha=0.8) | |
for i, skill in enumerate(skills): | |
plt.text(reduced_embeddings[i, 0], reduced_embeddings[i, 1], skill, fontsize=9, alpha=0.75) | |
plt.title(f"UMAP Projection of Skill Embeddings ({date})") | |
plt.xlabel("UMAP Dimension 1") | |
plt.ylabel("UMAP Dimension 2") | |
# Save the plot | |
os.makedirs(output_folder, exist_ok=True) | |
plot_path = os.path.join(output_folder, f"{date}_2D_projection.png") | |
plt.savefig(plot_path, format="png", dpi=300) | |
print(f"2D plot saved at {plot_path}") | |
plt.show() | |
# Step 5: Visualize the reduced embeddings (3D) | |
def visualize_embeddings_3d(reduced_embeddings, skills, output_folder, date): | |
fig = px.scatter_3d( | |
x=reduced_embeddings[:, 0], | |
y=reduced_embeddings[:, 1], | |
z=reduced_embeddings[:, 2], | |
text=skills, | |
title=f"3D UMAP Projection of Skill Embeddings ({date})" | |
) | |
# Save the plot | |
os.makedirs(output_folder, exist_ok=True) | |
plot_path = os.path.join(output_folder, f"{date}_3D_projection.html") | |
fig.write_html(plot_path) | |
print(f"3D plot saved at {plot_path}") | |
fig.show() | |
# Main execution | |
base_folder = "./tags" | |
output_folder = "./plots" | |
specific_date = "03-01-2024" # Example date folder to process | |
# Load skills from the specified date folder | |
skills = load_skills_from_date(base_folder, specific_date) | |
if not skills: | |
print(f"No skills found for the date: {specific_date}") | |
else: | |
print(f"Loaded {len(skills)} unique skills for the date: {specific_date}") | |
# Generate embeddings | |
embeddings = generate_embeddings(skills) | |
# Reduce dimensions to 2D and visualize | |
reduced_embeddings_2d = reduce_dimensions(embeddings, n_components=2) | |
visualize_embeddings_2d(reduced_embeddings_2d, skills, output_folder, specific_date) | |
# Reduce dimensions to 3D and visualize | |
reduced_embeddings_3d = reduce_dimensions(embeddings, n_components=3) | |
visualize_embeddings_3d(reduced_embeddings_3d, skills, output_folder, specific_date) | |