File size: 2,326 Bytes
c48497c
 
4fb4636
c48497c
 
 
4fb4636
c48497c
 
4fb4636
 
 
 
 
 
 
 
 
 
 
 
 
c48497c
 
 
4fb4636
c48497c
4fb4636
 
c48497c
4fb4636
 
c48497c
 
4fb4636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c48497c
4fb4636
 
 
c48497c
4fb4636
c48497c
 
 
 
 
 
 
4fb4636
c48497c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
import mne
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load an open-source LLM model with no additional training
model_name = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    torch_dtype=torch.float16,
    device_map="auto"  # Automatically selects CPU/GPU if available
)

def compute_band_power(psd, freqs, fmin, fmax):
    """Compute mean band power in the given frequency range."""
    freq_mask = (freqs >= fmin) & (freqs <= fmax)
    # Take the mean across channels and frequencies
    band_psd = psd[:, freq_mask].mean()  
    return float(band_psd)

def process_eeg(file):
    # Load EEG data using MNE
    # This expects a .fif file containing raw EEG data
    raw = mne.io.read_raw_fif(file.name, preload=True)

    # Compute PSD (Power Spectral Density) between 1 and 40 Hz
    psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)

    # Compute simple band powers
    alpha_power = compute_band_power(psd, freqs, 8, 12)
    beta_power = compute_band_power(psd, freqs, 13, 30)

    # Create a short summary of the extracted features
    data_summary = (
        f"Alpha power: {alpha_power:.3f}, Beta power: {beta_power:.3f}. "
        f"The EEG shows stable alpha rhythms and slightly elevated beta activity."
    )

    # Prepare the prompt for the language model
    prompt = f"""You are a neuroscientist analyzing EEG features.
Data Summary: {data_summary}

Provide a concise, user-friendly interpretation of these findings in simple terms.
"""

    # Generate the summary using the LLM
    inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(
        inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95
    )
    summary = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return summary

iface = gr.Interface(
    fn=process_eeg,
    inputs=gr.File(label="Upload your EEG data (FIF format)"),
    outputs="text",
    title="NeuroNarrative-Lite: EEG Summary",
    description="Upload EEG data to receive a text-based summary from an open-source language model. No training required!"
)

if __name__ == "__main__":
    iface.launch()