WealthifyAI / app.py
Rohan5manza's picture
Update app.py
dd9194f verified
raw
history blame
1.49 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from unsloth import FastLanguageModel
import torch
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/llama-3-8b-Instruct-bnb-4bit",
]
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/llama-3-8b-Instruct-bnb-4bit",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
# Load the base model and apply LoRA adapters
from transformers import AutoModel
adapter_model = AutoModel.from_pretrained("Rohan5manza/sentiment_analysis")
model = PeftModel.from_pretrained(model, adapter_model)
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Example Gradio or Streamlit interface for deploying
import gradio as gr
def gradio_interface(prompt):
response = generate_response(prompt)
return response
iface = gr.Interface(fn=gradio_interface, inputs="text", outputs="text")
iface.launch()