RoyAalekh's picture
Update app.py
322b9fb verified
raw
history blame
7.52 kB
import panel as pn
import pandas as pd
import os
from consts import INVERTER_ID_MAPPING, TEMPERATURE_COLUMNS_TO_USE
from plotting import (
create_heatmap,
create_iv_plot_with_power_curves,
create_iv_plot,
create_iv_plot_with_power_and_temperature_curves,
create_iv_plot_with_temperature_curves,
)
# Function to load chunked data based on date range
def load_timeseries_data(start_date, end_date):
file_name = f"enel_timeseries_data_{start_date}_{end_date}.csv"
return pd.read_csv(file_name, index_col=0, header=[0, 1, 2], parse_dates=True)
def load_other_features_data(start_date, end_date):
file_name = f"enel_other_features_data_{start_date}_{end_date}.csv"
return pd.read_csv(file_name, index_col=0, header=0, parse_dates=True)
kpi_data = pd.read_csv(
r"kpi_data.csv", index_col=0, header=0, parse_dates=True
)
# Initialize Panel extension
pn.extension("plotly")
# Widgets for selecting date range and columns
date_range_picker = pn.widgets.DateRangePicker(
name='Date Range',
start=pd.Timestamp('2022-09-01'),
end=pd.Timestamp('2023-08-31'),
value=(start, end + pd.DateOffset(months=1))
)
inverter_ids = pn.widgets.MultiSelect(
name="Inverter IDs",
value=[list(INVERTER_ID_MAPPING.keys())[0]],
options=list(INVERTER_ID_MAPPING.keys()),
size=8,
)
# Line Plots
plot_power_curves = pn.widgets.Checkbox(name="Plot P-dc and P-ac", value=False)
plot_temperature_curves = pn.widgets.Checkbox(name="Plot Temperatures", value=False)
# Heatmaps
heatmap_pr = pn.widgets.Checkbox(name="Heat Map PR", value=False)
heatmap_sy = pn.widgets.Checkbox(name="Heat Map SY", value=False)
heatmap_current = pn.widgets.Checkbox(name="Heat Map - Current", value=False)
heatmap_voltage = pn.widgets.Checkbox(name="Heat Map - Voltage", value=False)
heatmap_power = pn.widgets.Checkbox(name="Heat Map - Power", value=False)
heatmap_irradiance = pn.widgets.Checkbox(name="Heat Map - Irradiance", value=False)
heatmap_temperature = pn.widgets.Checkbox(
name="Heat Map - Temperature " "Heatsink", value=False
)
# Create a loading spinner
loading_spinner = pn.indicators.LoadingSpinner(width=50, height=50)
# Panel interactive functions
@pn.depends(
inverter_ids.param.value,
plot_power_curves.param.value,
plot_temperature_curves.param.value,
date_range_picker.param.value
)
def update_iv_plot(inverter_ids, plot_power_curves, plot_temperature_curves, date_range):
start_date, end_date = date_range
timeseries_data = load_timeseries_data(start_date, end_date)
other_features_data = load_other_features_data(start_date, end_date)
if not inverter_ids:
return pn.pane.Markdown("No Inverters selected for Plotting.")
else:
# Plot IV + Power + Temperature Curves
if plot_power_curves and plot_temperature_curves:
print("Plotting IV + Power + Temperature Curves")
return create_iv_plot_with_power_and_temperature_curves(
timeseries_data, other_features_data, inverter_ids
)
# Plot IV + Temperature Curves
elif (not plot_power_curves) and plot_temperature_curves:
print("Plot IV + Temperature Curves")
return create_iv_plot_with_temperature_curves(
timeseries_data, other_features_data, inverter_ids
)
# Plot IV + Power Curves
elif plot_power_curves and (not plot_temperature_curves):
print("Plot IV + Power Curves")
return create_iv_plot_with_power_curves(timeseries_data, inverter_ids)
# Plot only IV Curves
else:
print("Plot only IV Curves")
return create_iv_plot(timeseries_data, inverter_ids)
@pn.depends(heatmap_pr.param.value)
def update_heatmap_pr(heatmap_pr):
if heatmap_pr:
pr_df = kpi_data.filter(like="pr")
pr_df.columns = [i.split("-")[1] for i in pr_df.columns]
pr_heatmap = create_heatmap(pr_df, "PR Heatmap")
return pn.Row(pr_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_sy.param.value)
def update_heatmap_sy(heatmap_sy):
if heatmap_sy:
sy_df = kpi_data.filter(like="daily_specific_yield")
sy_df.columns = [i.split("-")[1] for i in sy_df.columns]
sy_heatmap = create_heatmap(sy_df, "SY Heatmap")
return pn.Row(sy_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_current.param.value)
def update_heatmap_current(heatmap_current):
if heatmap_current:
current_df = daily_timeseries_data.filter(like="I")
current_df.columns = [i.split("-")[1] for i in current_df.columns]
current_heatmap = create_heatmap(current_df, "Current Heatmap")
return pn.Row(current_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_voltage.param.value)
def update_heatmap_voltage(heatmap_voltage):
if heatmap_voltage:
voltage_df = daily_timeseries_data.filter(like="V")
voltage_df.columns = [i.split("-")[1] for i in voltage_df.columns]
voltage_heatmap = create_heatmap(voltage_df, "Voltage Heatmap")
return pn.Row(voltage_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_power.param.value)
def update_heatmap_power(heatmap_power):
if heatmap_power:
power_df = daily_timeseries_data.filter(like="P")
power_df.columns = [i.split("-")[1] for i in power_df.columns]
power_heatmap = create_heatmap(power_df, "Power Heatmap")
return pn.Row(power_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_irradiance.param.value)
def update_heatmap_irradiance(heatmap_irradiance):
if heatmap_irradiance:
irradiance_df = daily_timeseries_data.filter(like="G")
irradiance_df.columns = [i.split("-")[1] for i in irradiance_df.columns]
irradiance_heatmap = create_heatmap(irradiance_df, "Irradiance " "Heatmap")
return pn.Row(irradiance_heatmap)
return pn.pane.Markdown("")
@pn.depends(heatmap_temperature.param.value)
def update_heatmap_temperature(heatmap_temperature):
if heatmap_temperature:
temp_df = daily_timeseries_data.filter(like="THeatSink")
temp_df.columns = [i.split("-")[1] for i in temp_df.columns]
temp_heatmap = create_heatmap(temp_df, "T-Heatsink Heatmap")
return pn.Row(temp_heatmap)
return pn.pane.Markdown("")
# Create dashboard layout
dashboard = pn.Column(
"# ENEL Dashboard",
# IV Plots
pn.Row(
pn.Column(inverter_ids, plot_power_curves, plot_temperature_curves),
pn.panel(update_iv_plot, sizing_mode="stretch_width"),
),
# Heatmaps
pn.Row(
pn.Column(heatmap_pr), pn.panel(update_heatmap_pr, sizing_mode="stretch_width")
),
pn.Row(
pn.Column(heatmap_sy), pn.panel(update_heatmap_sy, sizing_mode="stretch_width")
),
pn.Row(
pn.Column(heatmap_current),
pn.panel(update_heatmap_current, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_voltage),
pn.panel(update_heatmap_voltage, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_power),
pn.panel(update_heatmap_power, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_irradiance),
pn.panel(update_heatmap_irradiance, sizing_mode="stretch_width"),
),
pn.Row(
pn.Column(heatmap_temperature),
pn.panel(update_heatmap_temperature, sizing_mode="stretch_width"),
),
)
# Serve the dashboard
dashboard.servable()