Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from http import HTTPStatus | |
from typing import Generator, List, Optional, Tuple, Dict | |
import re | |
from urllib.error import HTTPError | |
from flask import Flask, request, jsonify | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import threading | |
import requests | |
import torch | |
# Load the model and tokenizer | |
model_name = "dicta-il/dictalm2.0-instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Set the pad token to eos_token if not already set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
History = List[Tuple[str, str]] | |
Messages = List[Dict[str, str]] | |
def clear_session() -> History: | |
return [] | |
def history_to_messages(history: History) -> Messages: | |
messages = [] | |
for h in history: | |
messages.append({'role': 'user', 'content': h[0].strip()}) | |
messages.append({'role': 'assistant', 'content': h[1].strip()}) | |
return messages | |
def messages_to_history(messages: Messages) -> History: | |
history = [] | |
for q, r in zip(messages[0::2], messages[1::2]): | |
history.append((q['content'], r['content'])) | |
return history | |
# Flask app setup | |
app = Flask(__name__) | |
def predict(): | |
data = request.json | |
input_text = data.get('text', '') | |
# Format the input text with instruction tokens | |
formatted_text = f"<s>[INST] {input_text} [/INST]" | |
# Tokenize the input | |
inputs = tokenizer(formatted_text, return_tensors='pt', padding=True, truncation=True, max_length=1024) | |
# Generate the output | |
outputs = model.generate( | |
inputs['input_ids'], | |
attention_mask=inputs['attention_mask'], | |
max_length=1024, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode the output | |
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(formatted_text, '').strip() | |
return jsonify({"prediction": prediction}) | |
def run_flask(): | |
app.run(host='0.0.0.0', port=5000) | |
def is_hebrew(text: str) -> bool: | |
return bool(re.search(r'[\u0590-\u05FF]', text)) | |
# Run Flask in a separate thread | |
threading.Thread(target=run_flask).start() | |
def model_chat(query: Optional[str], history: Optional[History]) -> Generator[Tuple[str, History], None, None]: | |
if query is None: | |
query = '' | |
if history is None: | |
history = [] | |
if not query.strip(): | |
return | |
response = requests.post("http://127.0.0.1:5000/predict", json={"text": query.strip()}) | |
if response.status_code == 200: | |
prediction = response.json().get("prediction", "") | |
history.append((query, prediction)) | |
yield history | |
else: | |
yield history | |
with gr.Blocks(css=''' | |
.gr-group {direction: rtl;} | |
.chatbot{text-align:right;} | |
.dicta-header { | |
background-color: var(--input-background-fill); /* Replace with desired background color */ | |
border-radius: 10px; | |
padding: 20px; | |
text-align: center; | |
display: flex; | |
flex-direction: row; | |
align-items: center; | |
box-shadow: var(--block-shadow); | |
border-color: var(--block-border-color); | |
border-width: 1px; | |
} | |
@media (max-width: 768px) { | |
.dicta-header { | |
flex-direction: column; /* Change to vertical for mobile devices */ | |
} | |
} | |
.chatbot.prose { | |
font-size: 1.2em; | |
} | |
.dicta-logo { | |
width: 150px; /* Replace with actual logo width as desired */ | |
height: auto; | |
margin-bottom: 20px; | |
} | |
.dicta-intro-text { | |
margin-bottom: 20px; | |
text-align: center; | |
display: flex; | |
flex-direction: column; | |
align-items: center; | |
width: 100%; | |
font-size: 1.1em; | |
} | |
textarea { | |
font-size: 1.2em; | |
} | |
''', js=None) as demo: | |
gr.Markdown(""" | |
<div class="dicta-header"> | |
<a href=""> | |
<img src="file/logo_am.png" alt="Dicta Logo" class="dicta-logo"> | |
</a> | |
<div class="dicta-intro-text"> | |
<h1>讛讚讙诪讛 专讗砖讜谞讬转</h1> | |
<span dir='rtl'>讘专讜讻讬诐 讛讘讗讬诐 诇讚诪讜 讛讗讬谞讟专讗拽讟讬讘讬 讛专讗砖讜谉. 讞拽专讜 讗转 讬讻讜诇讜转 讛诪讜讚诇 讜专讗讜 讻讬爪讚 讛讜讗 讬讻讜诇 诇住讬讬注 诇讻诐 讘诪砖讬诪讜转讬讻诐</span><br/> | |
<span dir='rtl'>讛讚诪讜 谞讻转讘 注诇 讬讚讬 专讜注讬 专转诐 转讜讱 砖讬诪讜砖 讘诪讜讚诇 砖驻讛 讚讬拽讟讛 砖驻讜转讞 注诇 讬讚讬 诪驻讗"转</span><br/> | |
</div> | |
</div> | |
""") | |
interface = gr.ChatInterface(model_chat, fill_height=False) | |
interface.chatbot.rtl = True | |
interface.textbox.placeholder = "讛讻谞住 砖讗诇讛 讘注讘专讬转 (讗讜 讘讗谞讙诇讬转!)" | |
interface.textbox.rtl = True | |
interface.textbox.text_align = 'right' | |
interface.theme_css += '.gr-group {direction: rtl !important;}' | |
demo.queue(api_open=False).launch(max_threads=20, share=False, allowed_paths=['logo_am.png']) | |