|
from typing import Callable, List |
|
|
|
from base_model.string_utils import lower, remove_articles, remove_punc, white_space_fix |
|
|
|
|
|
def normalize_text(inp: str, preprocessing_functions: List[Callable[[str], str]]): |
|
for fun in preprocessing_functions: |
|
inp = fun(inp) |
|
return inp |
|
|
|
|
|
def normalize_text_default(inp: str) -> str: |
|
"""Preprocesses the sentence string by normalizing. |
|
|
|
Args: |
|
s (str): the sentence |
|
|
|
Returns: |
|
string: normalized with default parames |
|
""" |
|
|
|
steps = [remove_articles, white_space_fix, remove_punc, lower] |
|
|
|
return normalize_text(inp, steps) |
|
|
|
|
|
def compute_exact_match(prediction: str, answer: str) -> int: |
|
"""Computes exact match for sentences. |
|
|
|
Args: |
|
prediction (str): the predicted answer |
|
answer (str): the gold answer |
|
|
|
Returns: |
|
int: 1 for exact match, 0 for not |
|
""" |
|
return int(normalize_text_default(prediction) == normalize_text_default(answer)) |
|
|
|
|
|
def compute_f1(prediction: str, answer: str) -> float: |
|
"""Computes F1-score on token overlap for sentences. |
|
|
|
Args: |
|
prediction (str): the predicted answer |
|
answer (str): the gold answer |
|
|
|
Returns: |
|
boolean: the f1 score |
|
""" |
|
pred_tokens = normalize_text_default(prediction).split() |
|
answer_tokens = normalize_text_default(answer).split() |
|
|
|
if len(pred_tokens) == 0 or len(answer_tokens) == 0: |
|
return int(pred_tokens == answer_tokens) |
|
|
|
common_tokens = set(pred_tokens) & set(answer_tokens) |
|
|
|
if len(common_tokens) == 0: |
|
return 0 |
|
|
|
prec = len(common_tokens) / len(pred_tokens) |
|
rec = len(common_tokens) / len(answer_tokens) |
|
|
|
return 2 * (prec * rec) / (prec + rec) |
|
|