File size: 13,277 Bytes
56fd21a
 
1fc15a8
 
 
 
 
 
a38fa3f
 
 
 
 
 
 
 
1fc15a8
 
 
56fd21a
0e8391a
 
56fd21a
 
 
 
1fc15a8
56fd21a
 
0e8391a
 
1fc15a8
 
 
 
56fd21a
 
 
 
0e8391a
 
56fd21a
a38fa3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e8391a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e50357d
0e8391a
 
 
 
 
 
 
 
 
1fc15a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e8391a
 
 
56fd21a
 
0e8391a
 
 
 
 
56fd21a
 
 
0e8391a
 
 
56fd21a
 
 
0e8391a
 
 
56fd21a
 
 
0e8391a
 
56fd21a
 
 
 
 
 
0e8391a
56fd21a
1fc15a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e8391a
56fd21a
a38fa3f
 
56fd21a
0e8391a
56fd21a
a38fa3f
 
1fc15a8
a38fa3f
 
 
 
 
 
 
 
3cf2176
1fc15a8
0e8391a
a38fa3f
1fc15a8
 
 
a38fa3f
 
1fc15a8
a38fa3f
0e8391a
a38fa3f
0e8391a
0fbb073
0e8391a
a38fa3f
 
 
1fc15a8
3cf2176
a38fa3f
1fc15a8
0e8391a
a38fa3f
 
0e8391a
a38fa3f
0e8391a
a38fa3f
0e8391a
a38fa3f
 
 
 
 
 
 
 
 
3cf2176
a38fa3f
0e8391a
 
a38fa3f
 
 
 
 
 
0e8391a
a38fa3f
56fd21a
a38fa3f
1fc15a8
0e8391a
56fd21a
0e8391a
a38fa3f
 
 
56fd21a
a38fa3f
 
 
 
 
 
 
 
 
 
 
56fd21a
a38fa3f
 
 
 
 
 
 
 
 
56fd21a
1fc15a8
0e8391a
 
 
 
 
 
 
 
56fd21a
0e8391a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dd6be
0e8391a
 
 
 
 
 
 
 
07dd6be
a38fa3f
 
 
 
 
 
 
 
 
 
 
 
0e8391a
 
a38fa3f
0e8391a
 
 
 
 
a38fa3f
0e8391a
 
 
 
 
 
 
a38fa3f
 
56fd21a
 
0e8391a
a38fa3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
import time
import sys
import json
import traceback
import warnings
from datetime import datetime
from typing import Optional, List, Dict
import logging

# Настройка логгера
logger = logging.getLogger(__name__)
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

import requests
from bs4 import BeautifulSoup
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader, BSHTMLLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.tracers import ConsoleCallbackHandler
from langchain_core.callbacks import CallbackManager
from langchain_core.documents import Document

# Ignore SSL warnings
warnings.filterwarnings('ignore')

# Initialize environment variables
load_dotenv()

# Initialize FastAPI app
app = FastAPI(title="Status Law Assistant API")

# Конфигурация базы знаний
KB_CONFIG_PATH = "vector_store/kb_config.json"

def get_kb_config():
    if os.path.exists(KB_CONFIG_PATH):
        with open(KB_CONFIG_PATH, 'r') as f:
            return json.load(f)
    return {
        "version": 1,
        "processed_urls": [],
        "last_update": None
    }

def save_kb_config(config):
    os.makedirs(os.path.dirname(KB_CONFIG_PATH), exist_ok=True)
    with open(KB_CONFIG_PATH, 'w') as f:
        json.dump(config, f)

# Models for request/response
class ChatRequest(BaseModel):
    message: str

class ChatResponse(BaseModel):
    response: str
    context: Optional[str] = None

# Global variables
VECTOR_STORE_PATH = "vector_store"
URLS = [
    "https://status.law",
    "https://status.law/about",
    "https://status.law/careers",
    "https://status.law/tariffs-for-services-of-protection-against-extradition",
    "https://status.law/challenging-sanctions",
    "https://status.law/law-firm-contact-legal-protection",
    "https://status.law/cross-border-banking-legal-issues",
    "https://status.law/extradition-defense",
    "https://status.law/international-prosecution-protection",
    "https://status.law/interpol-red-notice-removal",
    "https://status.law/practice-areas",
    "https://status.law/reputation-protection",
    "https://status.law/faq"
]

# Check write permissions
try:
    if not os.path.exists(VECTOR_STORE_PATH):
        os.makedirs(VECTOR_STORE_PATH)
    test_file_path = os.path.join(VECTOR_STORE_PATH, 'test_write.txt')
    with open(test_file_path, 'w') as f:
        f.write('test')
    os.remove(test_file_path)
    print(f"Write permissions OK for {VECTOR_STORE_PATH}")
except Exception as e:
    print(f"WARNING: No write permissions for {VECTOR_STORE_PATH}: {str(e)}")
    print("Current working directory:", os.getcwd())
    print("User:", os.getenv('USER'))
    sys.exit(1)

# Enhanced logging
class CustomCallbackHandler(ConsoleCallbackHandler):
    def on_chain_end(self, run):
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "run_id": str(run.id),
            "inputs": run.inputs,
            "outputs": run.outputs,
            "execution_time": run.end_time - run.start_time if run.end_time else None,
            "metadata": run.metadata
        }
        
        os.makedirs("chat_history", exist_ok=True)
        with open("chat_history/detailed_logs.json", "a", encoding="utf-8") as f:
            json.dump(log_entry, f, ensure_ascii=False)
            f.write("\n")

def init_models():
    try:
        callback_handler = CustomCallbackHandler()
        callback_manager = CallbackManager([callback_handler])
        
        llm = ChatGroq(
            model_name="llama-3.3-70b-versatile",
            temperature=0.6,
            api_key=os.getenv("GROQ_API_KEY"),
            callback_manager=callback_manager
        )
        embeddings = HuggingFaceEmbeddings(
            model_name="intfloat/multilingual-e5-large-instruct"
        )
        return llm, embeddings
    except Exception as e:
        raise Exception(f"Model initialization failed: {str(e)}")

def check_url_availability(url: str) -> bool:
    try:
        response = requests.get(url, verify=False, timeout=10)
        return response.status_code == 200
    except Exception as e:
        print(f"Error checking {url}: {str(e)}")
        return False

def load_url_content(url: str) -> List[Document]:
    try:
        response = requests.get(url, verify=False, timeout=30)
        if response.status_code != 200:
            print(f"Failed to load {url}, status code: {response.status_code}")
            return []
            
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # Remove script and style elements
        for script in soup(["script", "style"]):
            script.decompose()
            
        # Get text content
        text = soup.get_text()
        
        # Clean up text
        lines = (line.strip() for line in text.splitlines())
        chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
        text = ' '.join(chunk for chunk in chunks if chunk)
        
        return [Document(page_content=text, metadata={"source": url})]
    except Exception as e:
        print(f"Error processing {url}: {str(e)}")
        return []

def build_knowledge_base(embeddings):
    try:
        logger.info("Starting knowledge base construction...")
        kb_config = get_kb_config()
        documents = []
        os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
        
        # Определяем URL для обработки
        urls_to_process = [url for url in URLS if url not in kb_config["processed_urls"]]
        
        if not urls_to_process:
            logger.info("No new URLs to process")
            return FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
            
        logger.info(f"Processing {len(urls_to_process)} new URLs")
        
        available_urls = [url for url in urls_to_process if check_url_availability(url)]
        logger.info(f"Accessible URLs: {len(available_urls)} out of {len(urls_to_process)}")
        
        for url in available_urls:
            try:
                logger.info(f"Processing {url}")
                docs = load_url_content(url)
                if docs:
                    documents.extend(docs)
                    kb_config["processed_urls"].append(url)
                    logger.info(f"Successfully loaded content from {url}")
                else:
                    logger.warning(f"No content extracted from {url}")
            except Exception as e:
                logger.error(f"Failed to process {url}: {str(e)}")
                continue

        if not documents:
            if kb_config["processed_urls"]:
                logger.info("No new documents to add, loading existing vector store")
                return FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
            raise Exception("No documents were successfully loaded!")

        logger.info(f"Total new documents loaded: {len(documents)}")
        
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=50
        )
        logger.info("Splitting documents into chunks...")
        chunks = text_splitter.split_documents(documents)
        logger.info(f"Created {len(chunks)} chunks")
        
        # Если есть существующая база знаний, добавляем к ней
        if os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
            logger.info("Loading existing vector store...")
            vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
            logger.info("Adding new documents to existing vector store...")
            vector_store.add_documents(chunks)
        else:
            logger.info("Creating new vector store...")
            vector_store = FAISS.from_documents(chunks, embeddings)
        
        logger.info("Saving vector store...")
        vector_store.save_local(folder_path=VECTOR_STORE_PATH, index_name="index")
        
        # Обновляем конфигурацию
        kb_config["version"] += 1
        kb_config["last_update"] = datetime.now().isoformat()
        save_kb_config(kb_config)
        
        logger.info(f"Knowledge base updated to version {kb_config['version']}")
        return vector_store
        
    except Exception as e:
        logger.error(f"Error in build_knowledge_base: {str(e)}")
        traceback.print_exc()
        raise Exception(f"Knowledge base creation failed: {str(e)}")

# Initialize models and knowledge base on startup
try:
    llm, embeddings = init_models()
    vector_store = None

    if os.path.exists(VECTOR_STORE_PATH):
        try:
            vector_store = FAISS.load_local(
                VECTOR_STORE_PATH,
                embeddings,
                allow_dangerous_deserialization=True
            )
            logger.info("Successfully loaded existing knowledge base")
        except Exception as e:
            logger.error(f"Failed to load existing knowledge base: {str(e)}")
            logger.error(traceback.format_exc())

    if vector_store is None:
        logger.info("Building new knowledge base...")
        vector_store = build_knowledge_base(embeddings)
        logger.info("Knowledge base built successfully")

except Exception as e:
    logger.error(f"Critical initialization error: {str(e)}")
    logger.error(traceback.format_exc())
    raise

# API endpoints
# API endpoints
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
    try:
        # Retrieve context
        context_docs = vector_store.similarity_search(request.message)
        context_text = "\n".join([d.page_content for d in context_docs])
        
        # Generate response
        prompt_template = PromptTemplate.from_template('''
            You are a helpful and polite legal assistant at Status Law.
            You answer in the language in which the question was asked.
            Answer the question based on the context provided.
            If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
            - For all users: +32465594521 (landline phone).
            - For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
            - Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).

            Context: {context}
            Question: {question}
            
            Response Guidelines:
            1. Answer in the user's language
            2. Cite sources when possible
            3. Offer contact options if unsure
        ''')
        
        chain = prompt_template | llm | StrOutputParser()
        response = chain.invoke({
            "context": context_text,
            "question": request.message
        })
        
        # Log interaction
        log_interaction(request.message, response, context_text)
        
        return ChatResponse(response=response, context=context_text)
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/rebuild-kb")
async def rebuild_knowledge_base():
    try:
        global vector_store
        vector_store = build_knowledge_base(embeddings)
        return {"status": "success", "message": "Knowledge base rebuilt successfully"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/kb-status")
async def get_kb_status():
    """Get current knowledge base status"""
    kb_config = get_kb_config()
    return {
        "version": kb_config["version"],
        "total_urls": len(URLS),
        "processed_urls": len(kb_config["processed_urls"]),
        "pending_urls": len([url for url in URLS if url not in kb_config["processed_urls"]]),
        "last_update": kb_config["last_update"]
    }

def log_interaction(user_input: str, bot_response: str, context: str):
    try:
        kb_config = get_kb_config()
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "user_input": user_input,
            "bot_response": bot_response,
            "context": context[:500],
            "kb_version": kb_config["version"]  # Используем актуальную версию
        }
        
        os.makedirs("chat_history", exist_ok=True)
        with open("chat_history/chat_logs.json", "a", encoding="utf-8") as f:
            f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
            
    except Exception as e:
        logger.error(f"Logging error: {str(e)}")
        logger.error(traceback.format_exc())

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)