Spaces:
Sleeping
Sleeping
File size: 16,498 Bytes
3011262 9e16676 ceaf3cb 9168ea4 231b18c aa0e9ef 231b18c aa0e9ef 231b18c aa0e9ef 231b18c 9e16676 61abcaa 405d93a 2a8243b ceaf3cb 3022177 13e02f0 3022177 13e02f0 3022177 199cd7b 3022177 2a8243b 651857e e960ed8 651857e ceaf3cb 9e16676 2a8243b 199cd7b 9e16676 2a8243b 9e16676 ceaf3cb 4a0272a b67494f ceaf3cb 9e16676 2a8243b 9e16676 2a8243b 9e16676 65804fb 9e16676 2a8243b 9e16676 67b9361 9e16676 5405c84 67b9361 9e16676 cee780d 199cd7b cee780d 67b9361 9e16676 67b9361 2a8243b ceaf3cb 2a8243b ceaf3cb 67b9361 9e16676 ceaf3cb 9e16676 67b9361 9e16676 3022177 9168ea4 61abcaa 9168ea4 61abcaa 9168ea4 3022177 9168ea4 3022177 9168ea4 61abcaa 9168ea4 61abcaa 9168ea4 3022177 9168ea4 03a0824 231b18c cee780d e141a67 231b18c cee780d e141a67 231b18c e141a67 231b18c e141a67 231b18c e141a67 231b18c e141a67 231b18c e141a67 231b18c cee780d 231b18c 03a0824 cee780d 231b18c 03a0824 cee780d 231b18c cee780d 61abcaa cee780d 231b18c cee780d 231b18c 03a0824 cee780d 231b18c 03a0824 cee780d 2a8243b 9e16676 2a8243b 9e16676 2a8243b a3b7b74 9e16676 a3b7b74 61abcaa a3b7b74 9e16676 a3b7b74 199cd7b 9e16676 2a8243b 9e16676 9168ea4 3022177 9168ea4 2a8243b 9e16676 9168ea4 2a8243b 9e16676 2a8243b 9e16676 405d93a d737c1b 405d93a d737c1b 405d93a d737c1b 405d93a d737c1b 405d93a 9e16676 cee780d 9168ea4 cee780d 9168ea4 9e16676 b67494f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import streamlit as st
st.set_page_config(page_title="Status Law Assistant", page_icon="⚖️")
import os
import time
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
import requests
import json
from datetime import datetime
from huggingface_hub import HfApi, upload_file, upload_folder, create_repo, Repository
from huggingface_hub.utils import RepositoryNotFoundError
import shutil
# Add these to your secrets or environment variables
try:
HF_TOKEN = st.secrets["HF_TOKEN"]
HF_USERNAME = "Rulga"
DATASET_NAME = "LS_chat"
DATASET_REPO = f"{HF_USERNAME}/{DATASET_NAME}"
# Добавим проверку значения токена
if not HF_TOKEN or HF_TOKEN.strip() == "":
st.error("HF_TOKEN пустой или отсутствует в secrets")
st.stop()
st.write("DEBUG: HF credentials loaded successfully")
except Exception as e:
st.error(f"Ошибка загрузки HuggingFace credentials: {str(e)}")
st.stop()
# Define base directory and absolute paths
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
VECTOR_STORE_PATH = os.path.join(BASE_DIR, "vector_store")
CHAT_HISTORY_DIR = os.path.join(BASE_DIR, "chat_history")
# Create required directories with absolute paths
REQUIRED_DIRS = [CHAT_HISTORY_DIR, VECTOR_STORE_PATH]
for dir_path in REQUIRED_DIRS:
os.makedirs(dir_path, exist_ok=True)
gitkeep_path = os.path.join(dir_path, '.gitkeep')
if not os.path.exists(gitkeep_path):
with open(gitkeep_path, 'w') as f:
pass
# Knowledge base info in session_state
if 'kb_info' not in st.session_state:
st.session_state.kb_info = {
'build_time': None,
'size': None
}
# Initialize chat_history in session_state
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Initialize messages if not exists
if 'messages' not in st.session_state:
st.session_state.messages = []
# Create history folder if not exists
#if not os.path.exists("chat_history"):
# os.makedirs("chat_history")
# Display title and knowledge base info
# st.title("www.Status.Law Legal Assistant")
st.markdown(
'''
<h1>
⚖️
<a href="https://status.law/" style="text-decoration: underline; color: blue; font-size: inherit;">
Status.Law
</a>
Legal Assistant
</h1>
''',
unsafe_allow_html=True
)
if st.session_state.kb_info['build_time'] and st.session_state.kb_info['size']:
st.caption(f"(Knowledge base build time: {st.session_state.kb_info['build_time']:.2f} seconds, "
f"size: {st.session_state.kb_info['size']:.2f} MB)")
# Path to store vector database
# VECTOR_STORE_PATH = "vector_store"
# Website URLs
urls = [
"https://status.law",
"https://status.law/about",
"https://status.law/careers",
"https://status.law/challenging-sanctions",
"https://status.law/tariffs-for-services-against-extradition-en",
"https://status.law/law-firm-contact-legal-protection",
"https://status.law/cross-border-banking-legal-issues",
"https://status.law/extradition-defense",
"https://status.law/international-prosecution-protection",
"https://status.law/interpol-red-notice-removal",
"https://status.law/practice-areas",
"https://status.law/reputation-protection",
"https://status.law/faq"
]
# Load secrets
try:
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
except Exception as e:
st.error("Error loading secrets. Please check your configuration.")
st.stop()
# Initialize models
@st.cache_resource
def init_models():
llm = ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0.6,
api_key=GROQ_API_KEY
)
embeddings = HuggingFaceEmbeddings(
#model_name="intfloat/multilingual-e5-large-instruct"
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
return llm, embeddings
# Build knowledge base
def build_knowledge_base(embeddings):
start_time = time.time()
documents = []
with st.status("Loading website content...") as status:
for url in urls:
try:
loader = WebBaseLoader(url)
docs = loader.load()
documents.extend(docs)
status.update(label=f"Loaded {url}")
except Exception as e:
st.error(f"Error loading {url}: {str(e)}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100
)
chunks = text_splitter.split_documents(documents)
vector_store = FAISS.from_documents(chunks, embeddings)
# Immediately save vector store after creation
force_save_vector_store(vector_store)
end_time = time.time()
build_time = end_time - start_time
# Calculate knowledge base size
total_size = 0
for path, dirs, files in os.walk(VECTOR_STORE_PATH):
for f in files:
fp = os.path.join(path, f)
total_size += os.path.getsize(fp)
size_mb = total_size / (1024 * 1024)
# Save knowledge base info
st.session_state.kb_info['build_time'] = build_time
st.session_state.kb_info['size'] = size_mb
st.success(f"""
Knowledge base created successfully:
- Time taken: {build_time:.2f} seconds
- Size: {size_mb:.2f} MB
- Number of chunks: {len(chunks)}
""")
return vector_store
# Function to save chat history
def save_chat_to_file(chat_history):
"""Save chat history to file using absolute path"""
current_date = datetime.now().strftime("%Y-%m-%d")
filename = os.path.join(CHAT_HISTORY_DIR, f"chat_history_{current_date}.json")
try:
with open(filename, 'w', encoding='utf-8') as f:
json.dump(chat_history, f, ensure_ascii=False, indent=2)
except Exception as e:
st.error(f"Error saving chat history: {e}")
# Function to load chat history
def load_chat_history():
"""Load chat history from file using absolute path"""
current_date = datetime.now().strftime("%Y-%m-%d")
filename = os.path.join(CHAT_HISTORY_DIR, f"chat_history_{current_date}.json")
if os.path.exists(filename):
try:
with open(filename, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
st.error(f"Error loading chat history: {e}")
return []
return []
def check_directory_permissions(directory):
"""Check if directory has proper read/write permissions"""
try:
# Check if directory exists and create if not
os.makedirs(directory, exist_ok=True)
# Try to create a test file
test_file = os.path.join(directory, "write_test.txt")
with open(test_file, "w") as f:
f.write("test")
f.flush()
os.fsync(f.fileno()) # Force write to disk
# Try to read the test file
with open(test_file, "r") as f:
content = f.read()
if content != "test":
raise Exception("File content verification failed")
# Clean up
os.remove(test_file)
return True, None
except Exception as e:
permissions = oct(os.stat(directory).st_mode)[-3:] if os.path.exists(directory) else "N/A"
error_msg = f"Permission error: {str(e)} (Directory permissions: {permissions})"
return False, error_msg
def sync_with_hf(local_path, repo_path, commit_message):
"""Sync local files with Hugging Face dataset"""
try:
st.write(f"DEBUG: Starting sync with HF for {repo_path}")
api = HfApi()
# Ensure the repository exists
try:
api.repo_info(repo_id=DATASET_REPO, repo_type="dataset")
st.write("DEBUG: Repository exists")
except RepositoryNotFoundError:
st.write("DEBUG: Creating new repository")
create_repo(DATASET_REPO, repo_type="dataset", token=HF_TOKEN)
# Upload directory content
st.write(f"DEBUG: Uploading folder {local_path} to {repo_path}")
api.upload_folder(
folder_path=local_path,
path_in_repo=repo_path,
repo_id=DATASET_REPO,
repo_type="dataset",
commit_message=commit_message,
token=HF_TOKEN
)
st.toast(f"✅ Synchronized with Hugging Face: {repo_path}", icon="🤗")
st.write("DEBUG: Sync completed successfully")
except Exception as e:
error_msg = f"Failed to sync with Hugging Face: {str(e)}"
st.error(error_msg)
st.write(f"DEBUG: Sync error details: {str(e)}")
raise Exception(error_msg)
def force_save_vector_store(vector_store):
"""Save vector store locally and sync with HF"""
try:
# Local save
vector_store.save_local(VECTOR_STORE_PATH)
# Sync with HF
sync_with_hf(
local_path=VECTOR_STORE_PATH,
repo_path="vector_store",
commit_message=f"Update vector store: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
except Exception as e:
error_msg = f"Failed to save vector store: {str(e)}"
st.error(error_msg)
raise Exception(error_msg)
def force_save_chat_history(chat_entry):
"""Save chat history locally and sync with HF"""
try:
current_date = datetime.now().strftime("%Y-%m-%d")
filename = os.path.join(CHAT_HISTORY_DIR, f"chat_history_{current_date}.json")
# Load existing history
existing_history = []
if os.path.exists(filename):
with open(filename, 'r', encoding='utf-8') as f:
existing_history = json.load(f)
# Add new entry
existing_history.append(chat_entry)
# Save locally
with open(filename, 'w', encoding='utf-8') as f:
json.dump(existing_history, f, ensure_ascii=False, indent=2)
# Sync with HF
sync_with_hf(
local_path=CHAT_HISTORY_DIR,
repo_path="chat_history",
commit_message=f"Update chat history: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
except Exception as e:
error_msg = f"Failed to save chat history: {str(e)}"
st.error(error_msg)
raise Exception(error_msg)
# Main function
def main():
# Initialize models
llm, embeddings = init_models()
# Check if knowledge base exists
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
st.warning("Knowledge base not found. Please create it first.")
if st.button("Create Knowledge Base"):
with st.spinner("Creating knowledge base... This may take a few minutes."):
try:
vector_store = build_knowledge_base(embeddings)
st.session_state.vector_store = vector_store
st.success("Knowledge base created successfully!")
st.rerun()
except Exception as e:
st.error(f"Error creating knowledge base: {e}")
return
# Load existing knowledge base
if 'vector_store' not in st.session_state:
try:
st.session_state.vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
embeddings,
allow_dangerous_deserialization=True
)
except Exception as e:
st.error(f"Error loading knowledge base: {e}")
return
with st.sidebar:
st.write(f"Working directory: {BASE_DIR}")
st.write(f"Vector store: {VECTOR_STORE_PATH}")
st.write(f"Chat history: {CHAT_HISTORY_DIR}")
# Chat mode
if 'vector_store' in st.session_state:
if 'messages' not in st.session_state:
st.session_state.messages = []
# Load chat history on startup
if not st.session_state.chat_history:
st.session_state.chat_history = load_chat_history()
# Display chat history
for message in st.session_state.messages:
st.chat_message("user").write(message["question"])
st.chat_message("assistant").write(message["answer"])
# User input
if question := st.chat_input("Ask your question"):
st.chat_message("user").write(question)
# Retrieve context and generate response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
context = st.session_state.vector_store.similarity_search(question)
context_text = "\n".join([doc.page_content for doc in context])
prompt = PromptTemplate.from_template("""
You are a helpful and polite legal assistant at Status Law, an international law firm specializing in extradition cases.
Answer in the language in which the question was asked.
Use the following information to answer questions:
- Primary context: {context}
- Services and pricing page: https://status.law/tariffs-for-services-against-extradition-en
When asked about service prices or specific legal services:
1. Search for the specific service on our website
2. Provide a brief description of how Status Law can help with this specific issue
3. Explain the key benefits or features of this service
4. Only share the direct link to pricing (https://status.law/tariffs-for-services-against-extradition-en) if the question is specifically about prices
5. For general service inquiries without price questions, focus on service descriptions without sharing the pricing page link
For example:
- If asked "How much does legal representation in court cost?", describe the service briefly and provide the pricing page link
- If asked "Can you help with document preparation?", explain the service without sharing the pricing link
If you cannot answer based on the available information, say so politely and offer to contact Status Law directly via the following channels:
- For all users: +32465594521 (landline phone)
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO)
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/)
Question: {question}
Response Guidelines:
1. Answer in the user's language
2. Be concise but informative
3. Cite specific service details when relevant
4. Emphasize our international expertise in extradition law
5. Share pricing page link ONLY when questions are specifically about costs
6. Offer contact options if the question requires detailed legal advice
""")
chain = prompt | llm | StrOutputParser()
response = chain.invoke({
"context": context_text,
"question": question
})
st.write(response)
# Create chat entry
chat_entry = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"question": question,
"answer": response,
"context": context_text
}
# Force save chat history
force_save_chat_history(chat_entry)
# Update session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
st.session_state.chat_history.append(chat_entry)
st.session_state.messages.append({
"question": question,
"answer": response
})
if __name__ == "__main__":
main()
|