AB_ESG_Pipeline / financial_analysis.py
Rundstedtz's picture
Upload 9 files
6096304 verified
raw
history blame
9.11 kB
import pandas as pd
import numpy as np
import yfinance as yf
import ast
from scipy import stats
from datetime import datetime, timedelta
import pytz
import pandas_market_calendars as mcal
import alphalens as al
import matplotlib.pyplot as plt
def sentiment_to_numerical(sentiment):
mapping = {'Negative': -1, 'Positive': 1, 'Neutral': 0}
return sentiment.map(mapping)
def process_sentiment_data(sentiment_data = 'finbert_sentiment.csv', sector_ticker = 'sector_ticker.csv', prices = 'prices.csv'):
columns_to_load = ['Ticker', 'pubDate', 'finbert_output']
df = pd.read_csv(sentiment_data, usecols=columns_to_load)
df.rename(columns={'Publication Date': 'pubDate','finbert_output': 'Sentiment'}, inplace=True)
# Adjusting the dates of news articles
nyse = mcal.get_calendar('NYSE')
trading_start_hour = 9
trading_start_minute = 30
trading_end_hour = 16
trading_end_minute = 0
def adjust_date(pub_date):
if pd.isnull(pub_date) or not isinstance(pub_date, pd.Timestamp):
return pub_date
trading_start_time = pd.Timestamp(f'{pub_date.date()} {trading_start_hour}:{trading_start_minute}')
if pub_date >= trading_start_time:
next_trading_day = nyse.schedule(start_date=pub_date.date() + pd.DateOffset(days=1), end_date=pub_date.date() + pd.DateOffset(days=10)).iloc[0]['market_open']
return next_trading_day
else:
valid_days = nyse.valid_days(start_date=pub_date.date(), end_date=pub_date.date())
if not valid_days.empty and pub_date.date() == valid_days[0].date():
return pub_date
else:
next_trading_day = nyse.schedule(start_date=pub_date.date() + pd.DateOffset(days=1), end_date=pub_date.date() + pd.DateOffset(days=10)).iloc[0]['market_open']
return next_trading_day
df['pubDate'] = df['pubDate'].apply(adjust_date)
# Converting probabiltiies to one value
def convert_sentiment_to_score(sentiment):
predicted_sentiment_probabilities = {}
components = sentiment.split(', ')
for component in components:
key_value = component.split(':')
if len(key_value) == 2:
key, value = key_value
key = key.strip(" '{}").capitalize()
try:
value = float(value.strip())
except ValueError:
continue
predicted_sentiment_probabilities[key] = value
positive = predicted_sentiment_probabilities.get('Positive', 0)
negative = predicted_sentiment_probabilities.get('Negative', 0)
neutral = predicted_sentiment_probabilities.get('Neutral',0)
sentiment_score = (positive - negative)/(1 + neutral)
return sentiment_score
df['Sentiment_Score_2'] = df['Sentiment'].apply(convert_sentiment_to_score)
# replacing invalid tickers
df['pubDate'] = pd.to_datetime(df['pubDate'], utc=True, format='ISO8601')
df['pubDate'] = df['pubDate'].dt.date
print(df['pubDate'].dtypes)
replacements = {
'ATVI': 'ATVIX',
'ABC': 'ABG',
'FBHS': 'FBIN',
'FISV': 'FI',
'FRC': 'FRCB',
'NLOK': 'SYM.MU',
'PKI': 'PKN.SG',
'RE': 'EG',
'SIVB': 'SIVBQ',
}
df['Ticker'] = df['Ticker'].replace(replacements)
df = df[df['Ticker'] != 'SBNY']
#
aggregated_data = df.groupby(['Ticker', 'pubDate'])['Sentiment_Score_2'].mean().reset_index()
aggregated_data['pubDate'] = pd.to_datetime(aggregated_data['pubDate']).dt.tz_localize('UTC')
aggregated_data.set_index(['pubDate', 'Ticker'], inplace=True)
prices = pd.read_csv(prices, index_col=0, parse_dates=True)
#
equal_weighted_benchmark = prices.pct_change(periods=1).shift(periods=-1).mean(axis=1)
equal_weighted_benchmark_df = equal_weighted_benchmark.reset_index()
equal_weighted_benchmark_df.columns = ['date', 'equal_weighted_benchmark']
returns_5d=prices.pct_change(periods=5).shift(periods=-5)/5
returns_10d=prices.pct_change(periods=10).shift(periods=-10)/10
returns_20d=prices.pct_change(periods=20).shift(periods=-20)/20
mean_5d = returns_5d.mean(axis=1).reset_index()
mean_10d = returns_10d.mean(axis=1).reset_index()
mean_20d = returns_20d.mean(axis=1).reset_index()
mean_5d.columns = ['date', '5d_mean_return']
mean_10d.columns = ['date', '10d_mean_return']
mean_20d.columns = ['date', '20d_mean_return']
equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_5d, on='date', how='left')
equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_10d, on='date', how='left')
equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_20d, on='date', how='left')
cut_date_min= aggregated_data.index.get_level_values('pubDate').min()
cut_date_max= aggregated_data.index.get_level_values('pubDate').max()
equal_weighted_benchmark_df = equal_weighted_benchmark_df[equal_weighted_benchmark_df.date>=cut_date_min]
equal_weighted_benchmark_df = equal_weighted_benchmark_df[equal_weighted_benchmark_df.date<=cut_date_max]
equal_weighted_benchmark_df
#
tickers = aggregated_data.index.get_level_values('Ticker').unique()
start_date = aggregated_data.index.get_level_values('pubDate').min() - pd.Timedelta(days=30)
end_date = aggregated_data.index.get_level_values('pubDate').max() + pd.Timedelta(days=30)
all_dates = prices.loc[cut_date_min:cut_date_max].index
all_tickers_dates = pd.MultiIndex.from_product([tickers, all_dates], names=['Ticker', 'Date'])
all_tickers_dates_df = pd.DataFrame(index=all_tickers_dates).reset_index()
aggregated_data_reset = aggregated_data.reset_index()
merged_data = pd.merge(all_tickers_dates_df, aggregated_data_reset, how='left', left_on=['Ticker', 'Date'], right_on=['Ticker', 'pubDate'])
sector_data = pd.read_excel('scraping.xlsx', usecols=['Ticker', 'Sector'])
merged_data = merged_data.reset_index()
merged_data = pd.merge(merged_data, sector_data, how='left', left_on='Ticker', right_on='Ticker')
#
decay_factor = 0.7
for ticker in tickers:
ticker_data = merged_data[merged_data['Ticker'] == ticker].copy()
original_nans = ticker_data['Sentiment_Score_2'].isna()
ticker_data['Sentiment_Score_2'] = ticker_data['Sentiment_Score_2'].ffill()
for i in range(1, len(ticker_data)):
if original_nans.iloc[i]:
ticker_data.iloc[i, ticker_data.columns.get_loc('Sentiment_Score_2')] = ticker_data.iloc[i - 1, ticker_data.columns.get_loc('Sentiment_Score_2')] * decay_factor
merged_data.loc[merged_data['Ticker'] == ticker, 'Sentiment_Score_2'] = ticker_data['Sentiment_Score_2']
merged_data['Sentiment_Score_2'].fillna(0, inplace=True)
merged_data.drop(columns=['pubDate'], inplace=True)
merged_data.set_index(['Date', 'Ticker'], inplace=True)
return merged_data, prices, equal_weighted_benchmark_df
# Alphalens
def alphalens_analysis(merged_data, prices):
factor_data=[]
factor_data = al.utils.get_clean_factor_and_forward_returns(
factor=merged_data['Sentiment_Score_2'],
prices=prices,
binning_by_group=False,
bins=None,
quantiles=5,
periods=(1, 5, 10, 20),
groupby=merged_data['Sector'],
)
al.tears.create_returns_tear_sheet(factor_data, long_short=True, group_neutral=False)
return factor_data
def alphalens_analysis_by_sector(factor_data):
mean_return_by_qt, std_err_by_qt = al.performance.mean_return_by_quantile(factor_data, by_group=True)
al.plotting.plot_quantile_returns_bar(mean_return_by_qt, by_group=True)
def calculate_information_ratio(factor_data, equal_weighted_benchmark_df):
# Merge the factor data with the benchmark data
factor_data = factor_data.merge(equal_weighted_benchmark_df, on='date', how='left')
# Calculate excess returns for various holding periods
factor_data['excess_return_1D'] = factor_data['1D'] - factor_data['equal_weighted_benchmark']
factor_data['excess_return_5D'] = factor_data['5D'] - factor_data['5d_mean_return']
factor_data['excess_return_10D'] = factor_data['10D'] - factor_data['10d_mean_return']
factor_data['excess_return_20D'] = factor_data['20D'] - factor_data['20d_mean_return']
# Initialize a DataFrame to store IR results
results = pd.DataFrame(index=range(1, 6), columns=['IR 1D', 'IR 5D', 'IR 10D', 'IR 20D'])
# Calculate IR for each quantile and holding period
for quantile in range(1, 6):
for period in [1, 5, 10, 20]:
column_name = f'excess_return_{period}D'
tmp = factor_data[factor_data.factor_quantile == quantile][['date', column_name]].groupby('date').mean()
ir = np.mean(tmp) / np.std(tmp) * np.sqrt(252)
results.at[quantile, f'IR {period}D'] = ir.values[0]
from IPython.display import display
display(results.style.format("{:.3f}"))