|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import trunc_normal_, DropPath |
|
|
|
|
|
def get_num_layer_for_convnext_single(var_name, depths): |
|
""" |
|
Each layer is assigned distinctive layer ids |
|
""" |
|
if var_name.startswith("downsample_layers"): |
|
stage_id = int(var_name.split(".")[1]) |
|
layer_id = sum(depths[:stage_id]) + 1 |
|
return layer_id |
|
|
|
elif var_name.startswith("stages"): |
|
stage_id = int(var_name.split(".")[1]) |
|
block_id = int(var_name.split(".")[2]) |
|
layer_id = sum(depths[:stage_id]) + block_id + 1 |
|
return layer_id |
|
|
|
else: |
|
return sum(depths) + 1 |
|
|
|
|
|
def get_num_layer_for_convnext(var_name): |
|
""" |
|
Divide [3, 3, 27, 3] layers into 12 groups; each group is three |
|
consecutive blocks, including possible neighboring downsample layers; |
|
adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py |
|
""" |
|
num_max_layer = 12 |
|
if var_name.startswith("downsample_layers"): |
|
stage_id = int(var_name.split(".")[1]) |
|
if stage_id == 0: |
|
layer_id = 0 |
|
elif stage_id == 1 or stage_id == 2: |
|
layer_id = stage_id + 1 |
|
elif stage_id == 3: |
|
layer_id = 12 |
|
return layer_id |
|
|
|
elif var_name.startswith("stages"): |
|
stage_id = int(var_name.split(".")[1]) |
|
block_id = int(var_name.split(".")[2]) |
|
if stage_id == 0 or stage_id == 1: |
|
layer_id = stage_id + 1 |
|
elif stage_id == 2: |
|
layer_id = 3 + block_id // 3 |
|
elif stage_id == 3: |
|
layer_id = 12 |
|
return layer_id |
|
else: |
|
return num_max_layer + 1 |
|
|
|
|
|
def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=()): |
|
parameter_group_names = {} |
|
parameter_group_vars = {} |
|
skip = {} |
|
if skip_list is not None: |
|
skip = skip_list |
|
elif hasattr(model, "no_weight_decay"): |
|
skip = model.no_weight_decay() |
|
num_layers = 12 |
|
layer_scale = list(ld ** (num_layers + 1 - i) for i in range(num_layers + 2)) |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if ( |
|
len(param.shape) == 1 |
|
or name.endswith(".bias") |
|
or name in skip |
|
or name.endswith(".gamma") |
|
or name.endswith(".beta") |
|
): |
|
group_name = "no_decay" |
|
this_weight_decay = 0.0 |
|
else: |
|
group_name = "decay" |
|
this_weight_decay = wd |
|
|
|
|
|
layer_id = get_num_layer_for_convnext(name) |
|
group_name = "layer_%d_%s" % (layer_id, group_name) |
|
|
|
if group_name not in parameter_group_names: |
|
scale = layer_scale[layer_id] |
|
cur_lr = lr * scale |
|
|
|
parameter_group_names[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"lr_scale": scale, |
|
"lr": cur_lr, |
|
} |
|
parameter_group_vars[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"lr_scale": scale, |
|
"lr": cur_lr, |
|
} |
|
parameter_group_vars[group_name]["params"].append(param) |
|
parameter_group_names[group_name]["params"].append(name) |
|
|
|
|
|
return list(parameter_group_vars.values()), [ |
|
v["lr"] for k, v in parameter_group_vars.items() |
|
] |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
"""LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
|
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError |
|
self.normalized_shape = (normalized_shape,) |
|
|
|
def forward(self, x): |
|
if self.data_format == "channels_last": |
|
return F.layer_norm( |
|
x, self.normalized_shape, self.weight, self.bias, self.eps |
|
) |
|
elif self.data_format == "channels_first": |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
class GRN(nn.Module): |
|
"""GRN (Global Response Normalization) layer""" |
|
|
|
def __init__(self, dim): |
|
super().__init__() |
|
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) |
|
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) |
|
|
|
def forward(self, x): |
|
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) |
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) |
|
return self.gamma * (x * Nx) + self.beta + x |
|
|
|
|
|
class Block(nn.Module): |
|
"""ConvNeXtV2 Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, drop_path=0.0, mult=4, use_checkpoint=False): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d( |
|
dim, dim, kernel_size=7, padding=3, groups=dim |
|
) |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear( |
|
dim, mult * dim |
|
) |
|
self.act = nn.GELU() |
|
self.grn = GRN(mult * dim) |
|
self.pwconv2 = nn.Linear(mult * dim, dim) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.use_checkpoint = use_checkpoint |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.grn(x) |
|
x = self.pwconv2(x) |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
|
|
class ConvNeXtV2(nn.Module): |
|
"""ConvNeXt V2 |
|
|
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chans=3, |
|
depths=[3, 3, 9, 3], |
|
dims=96, |
|
drop_path_rate=0.0, |
|
output_idx=[], |
|
use_checkpoint=False, |
|
): |
|
super().__init__() |
|
self.num_layers = len(depths) |
|
self.depths = output_idx |
|
self.embed_dims = [ |
|
int(dim) for i, dim in enumerate(dims) for _ in range(depths[i]) |
|
] |
|
self.embed_dim = dims[0] |
|
|
|
self.downsample_layers = ( |
|
nn.ModuleList() |
|
) |
|
stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = ( |
|
nn.ModuleList() |
|
) |
|
self.out_norms = nn.ModuleList() |
|
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=dims[i], |
|
drop_path=dp_rates[cur + j], |
|
use_checkpoint=use_checkpoint, |
|
) |
|
for j in range(depths[i]) |
|
] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
outs = [] |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
for stage in self.stages[i]: |
|
x = stage(x) |
|
outs.append(x.permute(0, 2, 3, 1)) |
|
cls_tokens = [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in outs] |
|
return outs, cls_tokens |
|
|
|
def get_params(self, lr, wd, ld, *args, **kwargs): |
|
encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld) |
|
return encoder_p, encoder_lr |
|
|
|
def freeze(self) -> None: |
|
for module in self.modules(): |
|
module.eval() |
|
for parameters in self.parameters(): |
|
parameters.requires_grad = False |
|
|
|
@classmethod |
|
def build(cls, config): |
|
obj = globals()[config["model"]["encoder"]["name"]](config) |
|
return obj |
|
|