File size: 47,042 Bytes
9c68964
 
ec86ed3
9c68964
 
 
 
ec86ed3
9c68964
 
 
 
 
 
ec86ed3
9c68964
ec86ed3
9b3a3bd
9c68964
 
 
 
9b3a3bd
 
 
 
9c68964
9b3a3bd
49865eb
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde00a5
ec86ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a2fb1
ec86ed3
 
9c68964
bedcfff
 
 
 
 
 
 
 
 
 
 
 
 
9c68964
 
bedcfff
 
 
9b3a3bd
 
 
bedcfff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c68964
 
bde00a5
 
 
9c68964
9b3a3bd
 
 
9c68964
 
 
 
 
 
 
 
 
0f4d845
9b3a3bd
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b52baf5
9c68964
9371dc4
9c68964
 
b52baf5
9c68964
 
 
 
9371dc4
 
 
 
 
9c68964
 
9371dc4
9c68964
b52baf5
 
 
 
 
9c68964
 
 
 
 
 
 
 
 
 
 
 
9371dc4
9c68964
 
 
 
 
 
 
 
 
9371dc4
 
 
 
 
9c68964
 
 
501e8a3
 
 
 
 
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f4d845
 
 
 
9c68964
0f4d845
 
 
 
 
9c68964
3b4c3ae
0f4d845
 
 
 
 
5c3511e
0f4d845
 
 
 
 
 
 
9c68964
0f4d845
 
 
 
 
 
 
 
9c68964
0f4d845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad40aea
5c3511e
ad40aea
 
 
19a995e
 
 
 
 
ad40aea
19a995e
5c3511e
ad40aea
5c3511e
19a995e
5c3511e
19a995e
1024d82
abec366
0f4d845
 
 
 
 
1024d82
0f4d845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b52baf5
9c68964
 
 
 
 
bde00a5
9c68964
bde00a5
9c68964
 
 
 
 
 
 
 
 
 
 
 
ec86ed3
9c68964
70d6370
9c68964
 
 
 
 
 
 
 
 
 
5c3511e
9c68964
 
 
 
5c3511e
9c68964
 
 
 
291e22b
9c68964
 
054913b
 
 
 
9cccab0
978f8be
 
 
 
 
9cccab0
054913b
 
9c68964
 
 
27c6085
9c68964
 
 
49cb056
27c6085
 
9c68964
49865eb
9c68964
 
 
 
 
 
9429b61
9c68964
 
 
 
 
 
0f4d845
a5c143f
 
ec86ed3
 
 
1de872d
ec86ed3
 
 
0f4d845
9c68964
 
ec86ed3
1de872d
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec86ed3
 
 
9c68964
 
 
 
 
 
 
 
ec86ed3
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec86ed3
9c68964
 
 
a5c143f
 
229f990
a5c143f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229f990
a5c143f
 
229f990
a5c143f
 
 
 
 
 
 
ad40aea
 
 
 
 
 
 
 
 
 
 
 
 
9c68964
 
a5c143f
9c68964
a5c143f
5ce765e
ad40aea
a5c143f
55a2fb1
a5c143f
 
 
 
ad40aea
 
 
 
55a2fb1
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
ad40aea
 
55a2fb1
 
 
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
55a2fb1
a5c143f
 
55a2fb1
a5c143f
55a2fb1
0f4d845
a5c143f
0f4d845
 
 
ec86ed3
1e0fb78
 
9c68964
 
 
 
 
 
 
 
 
 
ec86ed3
9c68964
 
ec86ed3
9c68964
 
55a2fb1
9c68964
55a2fb1
 
ad40aea
 
 
 
55a2fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
ad40aea
 
55a2fb1
 
 
9c68964
55a2fb1
9c68964
55a2fb1
 
 
 
 
 
 
 
9c68964
 
 
 
 
 
 
 
55a2fb1
9c68964
55a2fb1
 
ad40aea
 
 
 
55a2fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
ad40aea
 
55a2fb1
 
 
9c68964
55a2fb1
9c68964
55a2fb1
 
 
 
 
 
 
 
9c68964
 
 
 
 
 
 
 
 
 
 
 
03acfce
 
 
 
 
 
 
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec86ed3
9c68964
bde00a5
 
 
9c68964
 
 
 
 
 
 
 
 
0f4d845
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f4d845
9c68964
 
 
 
 
 
 
 
 
 
10d942e
03acfce
ad40aea
 
 
 
 
 
10d942e
 
ad40aea
 
ec86ed3
9c68964
a5c143f
03acfce
ec86ed3
03acfce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c68964
 
 
ad40aea
 
 
 
 
 
10d942e
ad40aea
 
9c68964
 
 
 
 
 
 
 
 
 
 
10d942e
 
 
 
 
 
9c68964
 
 
 
 
 
 
ad40aea
10d942e
 
 
9c68964
 
 
10d942e
ad40aea
 
 
 
 
 
10d942e
ad40aea
10d942e
9c68964
 
 
 
 
 
 
 
 
 
10d942e
 
 
 
 
 
9c68964
 
 
 
 
 
 
ad40aea
10d942e
 
 
9c68964
 
 
 
 
ad40aea
 
10d942e
ad40aea
 
9c68964
 
 
 
 
 
 
 
 
 
ad40aea
 
10d942e
ad40aea
 
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b52baf5
9c68964
3b4c3ae
9c68964
 
 
 
 
 
 
 
 
 
 
 
ad40aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c68964
 
 
 
 
 
 
 
0f4d845
9c68964
 
 
 
 
 
 
 
 
 
03acfce
9c68964
 
 
 
 
 
 
 
 
 
 
6616442
bc49057
9c68964
 
 
 
adfb223
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
import dotenv
import evalica
import gitlab
import io
import json
import os
import random
import re
import threading

import gradio as gr
import pandas as pd

from datetime import datetime
from github import Github
from gradio_leaderboard import Leaderboard
from huggingface_hub import upload_file, hf_hub_download, HfFolder, HfApi
from openai import OpenAI

# Load environment variables
dotenv.load_dotenv()

# Initialize OpenAI Client
api_key = os.getenv("API_KEY")
base_url = "https://api.pandalla.ai/v1"
openai_client = OpenAI(api_key=api_key, base_url=base_url)

# Timeout in seconds for model responses
TIMEOUT = 90

# Hint string constant
SHOW_HINT_STRING = True  # Set to False to hide the hint string altogether
HINT_STRING = "Once signed in, your votes will be recorded securely."

# Load context length limits
with open("context_window.json", "r") as file:
    context_window = json.load(file)

# Get list of available models
available_models = list(context_window.keys())

# Initialize global variables
models_state = {}
conversation_state = {}


def fetch_github_content(url):
    """Fetch detailed content from a GitHub URL using PyGithub."""
    token = os.getenv("GITHUB_TOKEN")
    if not token:
        print("GITHUB_TOKEN not set.")
        return None

    g = Github(token)

    try:
        match = re.match(
            r"https?://github\.com/([^/]+)/([^/]+)/(commit|pull|issues|discussions)/([a-z0-9]+)",
            url,
        )

        if not match:
            repo_part = re.match(r"https?://github\.com/([^/]+)/([^/]+)/?", url)
            if repo_part:
                owner, repo = repo_part.groups()
                repo = g.get_repo(f"{owner}/{repo}")
                try:
                    readme = repo.get_readme()
                    return readme.decoded_content.decode()
                except:
                    return repo.description
            return None

        owner, repo, category, identifier = match.groups()
        repo = g.get_repo(f"{owner}/{repo}")

        if category == "commit":
            commit = repo.get_commit(identifier)
            return commit.__dict__

        elif category in ["pull", "issues"]:
            obj = (
                repo.get_pull(int(identifier))
                if category == "pull"
                else repo.get_issue(int(identifier))
            )
        return obj.__dict__

    except Exception as e:
        print(f"GitHub API error: {e}")
        return None


def fetch_gitlab_content(url):
    """Fetch content from GitLab URL using python-gitlab."""
    token = os.getenv("GITLAB_TOKEN")
    if not token:
        print("GITLAB_TOKEN not set.")
        return None
    gl = gitlab.Gitlab(private_token=token)

    try:
        match = re.match(
            r"https?://gitlab\.com/([^/]+)/([^/]+)/-/?(commit|merge_requests|issues)/([^/]+)",
            url,
        )
        if not match:
            repo_part = re.match(r"https?://gitlab\.com/([^/]+)/([^/]+)/?", url)
            if repo_part:
                owner, repo = repo_part.groups()
                project = gl.projects.get(f"{owner}/{repo}")
                try:
                    readme = project.files.get(file_path="README.md", ref="master")
                    return readme.decode()
                except gitlab.exceptions.GitlabGetError:
                    return project.description
            return None

        owner, repo, category, identifier = match.groups()
        project = gl.projects.get(f"{owner}/{repo}")

        if category == "commit":
            commit = project.commits.get(identifier)
            return commit.__dict__

        elif category == "merge_requests":
            merge_request = project.mergerequests.get(int(identifier))
            return merge_request.__dict__

        elif category == "issues":
            issue = project.issues.get(int(identifier))
            return issue.__dict__

    except Exception as e:
        print(f"GitLab API error: {e}")
        return None


def fetch_huggingface_content(url):
    """Fetch detailed content from a Hugging Face URL using huggingface_hub API."""
    token = os.getenv("HF_TOKEN")
    if not token:
        print("HF_TOKEN not set.")
        return None

    api = HfApi(token=token)

    try:
        if "/commit/" in url:
            commit_hash = url.split("/commit/")[-1]
            repo_id = url.split("/commit/")[0].split("huggingface.co/")[-1]
            commits = api.list_repo_commits(repo_id=repo_id, revision=commit_hash)
            if commits:
                commit = commits[0]
                return commit.__dict__
            return None

        elif "/discussions/" in url:
            discussion_num = int(url.split("/discussions/")[-1])
            repo_id = url.split("/discussions/")[0].split("/huggingface.co/")[-1]
            discussion = api.get_discussion_details(
                repo_id=repo_id, discussion_num=discussion_num
            )
            return discussion.__dict__

        else:
            repo_id = url.split("huggingface.co/")[-1]
            repo_info = api.repo_info(repo_id=repo_id)
            return repo_info.__dict__

    except Exception as e:
        print(f"Hugging Face API error: {e}")
    return None


def fetch_url_content(url):
    """Main URL content fetcher that routes to platform-specific handlers."""
    try:
        if "github.com" in url:
            return fetch_github_content(url)
        elif "gitlab.com" in url:
            return fetch_gitlab_content(url)
        elif "huggingface.co" in url:
            return fetch_huggingface_content(url)
    except Exception as e:
        print(f"Error fetching URL content: {e}")
    return ""


# Truncate prompt
def truncate_prompt(user_input, model_alias, models, conversation_state):
    """
    Truncate the conversation history and user input to fit within the model's context window.

    Args:
        user_input (str): The latest input from the user.
        model_alias (str): Alias for the model being used (e.g., "Model A", "Model B").
        models (dict): Dictionary mapping model aliases to their names.
        conversation_state (dict): State containing the conversation history for all models.

    Returns:
        str: Truncated conversation history and user input.
    """
    model_name = models[model_alias]
    context_length = context_window.get(model_name, 4096)

    # Get the full conversation history for the model
    history = conversation_state.get(model_name, [])
    full_conversation = [
        {"role": msg["role"], "content": msg["content"]} for msg in history
    ]
    full_conversation.append({"role": "user", "content": user_input})

    # Convert to JSON string for accurate length measurement
    json_conversation = json.dumps(full_conversation)

    if len(json_conversation) <= context_length:
        # If the full conversation fits, return it as-is
        return full_conversation

    # Truncate based on the current round
    if not history:  # First round, truncate FILO
        while len(json.dumps(full_conversation)) > context_length:
            full_conversation.pop(0)  # Remove from the start
    else:  # Subsequent rounds, truncate FIFO
        while len(json.dumps(full_conversation)) > context_length:
            full_conversation.pop(-1)  # Remove from the end

    return full_conversation


def chat_with_models(
    user_input, model_alias, models, conversation_state, timeout=TIMEOUT
):
    model_name = models[model_alias]
    truncated_input = truncate_prompt(
        user_input, model_alias, models, conversation_state
    )
    conversation_state.setdefault(model_name, []).append(
        {"role": "user", "content": user_input}
    )

    response_event = threading.Event()  # Event to signal response completion
    model_response = {"content": None, "error": None}

    def request_model_response():
        try:
            request_params = {"model": model_name, "messages": truncated_input}
            response = openai_client.chat.completions.create(**request_params)
            model_response["content"] = response.choices[0].message.content
        except Exception as e:
            model_response["error"] = f"{model_name} model is not available. Error: {e}"
        finally:
            response_event.set()  # Signal that the response is completed

    # Start the model request in a separate thread
    response_thread = threading.Thread(target=request_model_response)
    response_thread.start()

    # Wait for the specified timeout
    response_event_occurred = response_event.wait(timeout)

    if not response_event_occurred:
        raise TimeoutError(
            f"The {model_alias} model did not respond within {timeout} seconds."
        )
    elif model_response["error"]:
        raise Exception(model_response["error"])
    else:
        formatted_response = f"```\n{model_response['content']}\n```"
        conversation_state[model_name].append(
            {"role": "assistant", "content": model_response["content"]}
        )
        return formatted_response


def save_content_to_hf(feedback_data, repo_name):
    """
    Save feedback content to Hugging Face repository organized by quarter.
    """
    # Serialize the content to JSON and encode it as bytes
    json_content = json.dumps(feedback_data, indent=4).encode("utf-8")

    # Create a binary file-like object
    file_like_object = io.BytesIO(json_content)

    # Get the current year and quarter
    now = datetime.now()
    quarter = (now.month - 1) // 3 + 1
    year_quarter = f"{now.year}_Q{quarter}"
    day_hour_minute_second = now.strftime("%d_%H%M%S")

    # Define the path in the repository
    filename = f"{year_quarter}/{day_hour_minute_second}.json"

    # Ensure the user is authenticated with HF
    token = HfFolder.get_token()
    if token is None:
        raise ValueError("Please log in to Hugging Face using `huggingface-cli login`.")

    # Upload to Hugging Face repository
    upload_file(
        path_or_fileobj=file_like_object,
        path_in_repo=filename,
        repo_id=repo_name,
        repo_type="dataset",
        use_auth_token=token,
    )


def load_content_from_hf(repo_name="SE-Arena/votes"):
    """
    Read feedback content from a Hugging Face repository based on the current quarter.

    Args:
        repo_name (str): Hugging Face repository name.

    Returns:
        list: Aggregated feedback data read from the repository.
    """
    feedback_data = []

    # Get the current year and quarter
    now = datetime.now()
    quarter = (now.month - 1) // 3 + 1
    year_quarter = f"{now.year}_Q{quarter}"

    try:
        api = HfApi()
        # List all files in the repository
        for file in api.list_repo_files(repo_id=repo_name, repo_type="dataset"):
            # Filter files by current year and month
            if year_quarter not in file:
                continue
            # Download and aggregate data
            local_path = hf_hub_download(
                repo_id=repo_name, filename=file, repo_type="dataset"
            )
            with open(local_path, "r") as f:
                data = json.load(f)
                if isinstance(data, list):
                    feedback_data.extend(data)
                elif isinstance(data, dict):
                    feedback_data.append(data)

        return feedback_data

    except:
        raise Exception("Error loading feedback data from Hugging Face repository.")


def get_leaderboard_data(feedback_entry=None):
    # Load feedback data from the Hugging Face repository
    feedback_data = load_content_from_hf()
    feedback_df = pd.DataFrame(feedback_data)

    # Concatenate the new feedback with the existing leaderboard data
    if feedback_entry is not None:
        feedback_df = pd.concat(
            [feedback_df, pd.DataFrame([feedback_entry])], ignore_index=True
        )

    if feedback_df.empty:
        return pd.DataFrame(
            columns=[
                "Rank",
                "Model",
                "Elo Score",
                "Consistency Score",
                "Average Win Rate",
                "Bradley-Terry Coefficient",
                "Eigenvector Centrality Value",
                "Newman Modularity Score",
                "PageRank Score",
            ]
        )

    # map vote to winner
    feedback_df["winner"] = feedback_df["winner"].map(
        {
            "left": evalica.Winner.X,
            "right": evalica.Winner.Y,
            "tie": evalica.Winner.Draw,
        }
    )

    # Calculate scores using various metrics
    avr_result = evalica.average_win_rate(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    bt_result = evalica.bradley_terry(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    newman_result = evalica.newman(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    eigen_result = evalica.eigen(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    elo_result = evalica.elo(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    pagerank_result = evalica.pagerank(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )

    # Calculate consistency score as a pandas Series aligned with other metrics
    is_result = pd.Series(
        "N/A", index=elo_result.scores.index
    )  # Initialize with zeros using same index

    # Loop through models and update values
    for model in is_result.index:
        # Filter self-matches for this model
        self_matches = feedback_df[
            (feedback_df["left"] == model) & (feedback_df["right"] == model)
        ]
        totals = len(self_matches)

        if totals:
            # Count non-draw outcomes (wins or losses)
            draws = self_matches[self_matches["winner"] == evalica.Winner.Draw].shape[0]
            # Store as percentage directly
            is_result[model] = round(draws / totals * 100, 2)

    # Combine all results into a single DataFrame
    leaderboard_data = pd.DataFrame(
        {
            "Model": elo_result.scores.index,
            "Elo Score": elo_result.scores.values,
            "Consistency Score": is_result.values,
            "Average Win Rate": avr_result.scores.values * 100,
            "Bradley-Terry Coefficient": bt_result.scores.values,
            "Eigenvector Centrality Value": eigen_result.scores.values,
            "Newman Modularity Score": newman_result.scores.values,
            "PageRank Score": pagerank_result.scores.values,
        }
    )

    # Round all numeric columns to two decimal places
    leaderboard_data = leaderboard_data.round(
        {
            "Elo Score": 2,
            "Average Win Rate": 2,
            "Bradley-Terry Coefficient": 2,
            "Eigenvector Centrality Value": 2,
            "Newman Modularity Score": 2,
            "PageRank Score": 2,
        }
    )

    # Add a Rank column based on Elo scores
    leaderboard_data["Rank"] = (
        leaderboard_data["Elo Score"].rank(ascending=False).astype(int)
    )

    # Place rank in the first column
    leaderboard_data = leaderboard_data[
        ["Rank"] + [col for col in leaderboard_data.columns if col != "Rank"]
    ]
    return leaderboard_data


# Function to enable or disable submit buttons based on textbox content
def toggle_submit_button(text):
    if not text or text.strip() == "":
        return gr.update(interactive=False)  # Disable the button
    else:
        return gr.update(interactive=True)  # Enable the button


# Gradio Interface
with gr.Blocks() as app:
    user_authenticated = gr.State(False)
    models_state = gr.State({})
    conversation_state = gr.State({})

    with gr.Tab("🏆Leaderboard"):
        # Add title and description as a Markdown component
        leaderboard_intro = gr.Markdown(
            """
            # 🏆 Software Engineering (SE) Chatbot Leaderboard: Community-Driven Evaluation of Top SE Chatbots

            The SE Arena is an open-source platform designed to evaluate language models through human preference, fostering transparency and collaboration. Developed by researchers at [Software Analysis and Intelligence Lab (SAIL)](https://sail.cs.queensu.ca), the platform empowers the community to assess and compare the performance of leading foundation models in SE tasks. For technical details, check out our [paper](https://arxiv.org/abs/2502.01860).
            """,
            elem_classes="leaderboard-intro",
        )
        # Initialize the leaderboard with the DataFrame containing the expected columns
        leaderboard_component = Leaderboard(
            value=get_leaderboard_data(),
            select_columns=[
                "Rank",
                "Model",
                "Elo Score",
                "Consistency Score",
            ],
            search_columns=["Model"],
            filter_columns=[
                "Elo Score",
                "Consistency Score",
                "Average Win Rate",
                "Bradley-Terry Coefficient",
                "Eigenvector Centrality Value",
                "Newman Modularity Score",
                "PageRank Score",
            ],
        )
        # Add a citation block in Markdown
        citation_component = gr.Markdown(
            """
            Made with ❤️ for SE Arena. If this work is useful to you, please consider citing:
            ```
            @inproceedings{zhao2025se,
            title={SE Arena: An Interactive Platform for Evaluating Foundation Models in Software Engineering},
            author={Zhao, Zhimin},
            booktitle={ACM international conference on AI Foundation Models and Software Engineering},
            year={2025}}
            ```
            """
        )
    with gr.Tab("⚔️Arena"):
        # Add title and description as a Markdown component
        arena_intro = gr.Markdown(
            f"""
            # ⚔️ Software Engineering (SE) Arena: Explore and Test the Best SE Chatbots with Long-Context Interactions

            ## 📜How It Works
            - **Blind Comparison**: Submit a SE-related query to two anonymous chatbots randomly selected from up to {len(available_models)} top models from OpenAI, Gemini, Grok, Claude, Deepseek, Qwen, Llama, Mistral, and others.
            - **Interactive Voting**: Engage in multi-turn dialogues with both chatbots and compare their responses. You can continue the conversation until you confidently choose the better model.
            - **Fair Play Rules**: Votes are counted only if chatbot identities remain anonymous. Revealing a chatbot's identity disqualifies the session.

            **Note:** Due to budget constraints, responses that take longer than {TIMEOUT} seconds to generate will be discarded.
            """,
            elem_classes="arena-intro",
        )
        # Add Hugging Face Sign In button and message
        with gr.Row():
            # Define the markdown text with or without the hint string
            markdown_text = "## Please sign in first to vote!"
            if SHOW_HINT_STRING:
                markdown_text += f"\n{HINT_STRING}"
            hint_markdown = gr.Markdown(markdown_text, elem_classes="markdown-text")
            login_button = gr.Button(
                "Sign in with Hugging Face", elem_id="oauth-button"
            )

        guardrail_message = gr.Markdown("", visible=False, elem_id="guardrail-message")

        # NEW: Add a textbox for the repository URL above the user prompt
        repo_url = gr.Textbox(
            show_label=False,
            placeholder="Optional: Enter the URL of a repository (GitHub, GitLab, Hugging Face), issue, commit, or pull request.",
            lines=1,
            interactive=False,
        )

        # Components with initial non-interactive state
        shared_input = gr.Textbox(
            show_label=False,
            placeholder="Enter your query for both models here.",
            lines=2,
            interactive=False,  # Initially non-interactive
        )
        send_first = gr.Button(
            "Submit", visible=True, interactive=False
        )  # Initially non-interactive

        # Add event listener to shared_input to toggle send_first button
        shared_input.change(
            fn=toggle_submit_button, inputs=shared_input, outputs=send_first
        )

        user_prompt_md = gr.Markdown(value="", visible=False)

        with gr.Column():
            shared_input
            user_prompt_md

        with gr.Row():
            response_a_title = gr.Markdown(value="", visible=False)
            response_b_title = gr.Markdown(value="", visible=False)

        with gr.Row():
            response_a = gr.Markdown(label="Response from Model A")
            response_b = gr.Markdown(label="Response from Model B")

        # Add a popup component for timeout notification
        with gr.Row(visible=False) as timeout_popup:
            timeout_message = gr.Markdown(
                "### Timeout\n\nOne of the models did not respond within 1 minute. Please try again."
            )
            close_popup_btn = gr.Button("Okay")

        def close_timeout_popup():
            # Re-enable or disable the submit buttons based on the current textbox content
            shared_input_state = gr.update(interactive=True)
            send_first_state = toggle_submit_button(shared_input.value)

            model_a_input_state = gr.update(interactive=True)
            model_a_send_state = toggle_submit_button(model_a_input.value)

            model_b_input_state = gr.update(interactive=True)
            model_b_send_state = toggle_submit_button(model_b_input.value)

            # Keep repo_url in sync with shared_input
            repo_url_state = gr.update(interactive=True)

            return (
                gr.update(visible=False),  # Hide the timeout popup
                shared_input_state,  # Update shared_input
                send_first_state,  # Update send_first button
                model_a_input_state,  # Update model_a_input
                model_a_send_state,  # Update model_a_send button
                model_b_input_state,  # Update model_b_input
                model_b_send_state,  # Update model_b_send button
                repo_url_state,  # Update repo_url button
            )

        # Multi-round inputs, initially hidden
        with gr.Row(visible=False) as multi_round_inputs:
            model_a_input = gr.Textbox(label="Model A Input", lines=1)
            model_a_send = gr.Button(
                "Send to Model A", interactive=False
            )  # Initially disabled

            model_b_input = gr.Textbox(label="Model B Input", lines=1)
            model_b_send = gr.Button(
                "Send to Model B", interactive=False
            )  # Initially disabled

        # Add event listeners to model_a_input and model_b_input to toggle their submit buttons
        model_a_input.change(
            fn=toggle_submit_button, inputs=model_a_input, outputs=model_a_send
        )

        model_b_input.change(
            fn=toggle_submit_button, inputs=model_b_input, outputs=model_b_send
        )

        close_popup_btn.click(
            close_timeout_popup,
            inputs=[],
            outputs=[
                timeout_popup,
                shared_input,
                send_first,
                model_a_input,
                model_a_send,
                model_b_input,
                model_b_send,
                repo_url,
            ],
        )

        def guardrail_check_se_relevance(user_prompt):
            """
            Use gpt-4o-mini to check if the user_prompt is SE-related.
            Return True if it is SE-related, otherwise False.
            """
            # Example instructions for classification — adjust to your needs
            system_message = {
                "role": "system",
                "content": (
                    "You are a classifier that decides if a user's question is relevant to software engineering. "
                    "If the question is about software engineering concepts, tools, processes, or code, respond with 'Yes'. "
                    "Otherwise, respond with 'No'."
                ),
            }
            user_message = {"role": "user", "content": user_prompt}

            try:
                # Make the chat completion call
                response = openai_client.chat.completions.create(
                    model="gpt-4o-mini", messages=[system_message, user_message]
                )
                classification = response.choices[0].message.content.strip().lower()
                # Check if the LLM responded with 'Yes'
                return classification.lower().startswith("yes")
            except Exception as e:
                print(f"Guardrail check failed: {e}")
                # If there's an error, you might decide to fail open (allow) or fail closed (block).
                # Here we default to fail open, but you can change as needed.
                return True

        def disable_first_submit_ui():
            """First function to immediately disable UI elements"""
            return (
                # [0] guardrail_message: hide
                gr.update(visible=False),
                # [1] shared_input: disable but keep visible
                gr.update(interactive=False),
                # [2] repo_url: disable but keep visible
                gr.update(interactive=False),
                # [3] send_first: disable and show loading state
                gr.update(interactive=False, value="Processing..."),
            )

        # Function to update model titles and responses
        def update_model_titles_and_responses(
            repo_url, user_input, models_state, conversation_state
        ):
            # Guardrail check first
            if not repo_url and not guardrail_check_se_relevance(user_input):
                # Return updates to show the guardrail message and re-enable UI
                return (
                    # [0] guardrail_message: Show guardrail message
                    gr.update(
                        value="### Oops! Try asking something about software engineering. Thanks!",
                        visible=True,
                    ),
                    # [1] shared_input: clear and re-enable
                    gr.update(value="", interactive=True, visible=True),
                    # [2] repo_url: clear and re-enable
                    gr.update(value="", interactive=True, visible=True),
                    # [3] user_prompt_md: clear and hide
                    gr.update(value="", visible=False),
                    # [4] response_a_title: clear and hide
                    gr.update(value="", visible=False),
                    # [5] response_b_title: clear and hide
                    gr.update(value="", visible=False),
                    # [6] response_a: clear response
                    gr.update(value=""),
                    # [7] response_b: clear response
                    gr.update(value=""),
                    # [8] multi_round_inputs: hide
                    gr.update(visible=False),
                    # [9] vote_panel: hide
                    gr.update(visible=False),
                    # [10] send_first: re-enable button with original text
                    gr.update(visible=True, interactive=True, value="Submit"),
                    # [11] feedback: enable the selection
                    gr.update(interactive=True),
                    # [12] models_state: pass state as-is
                    models_state,
                    # [13] conversation_state: pass state as-is
                    conversation_state,
                    # [14] timeout_popup: hide
                    gr.update(visible=False),
                    # [15] model_a_send: disable
                    gr.update(interactive=False),
                    # [16] model_b_send: disable
                    gr.update(interactive=False),
                    # [17] thanks_message: hide
                    gr.update(visible=False),
                )

            repo_info = fetch_url_content(repo_url)
            # Combine repository info (if available) with the user query.
            combined_user_input = (
                f"Repo-related Information: {repo_info}\n\n{user_input}"
                if repo_info
                else user_input
            )

            # Randomly select two models for the comparison
            selected_models = [random.choice(available_models) for _ in range(2)]
            models = {"Model A": selected_models[0], "Model B": selected_models[1]}

            # Update the states
            models_state.clear()
            models_state.update(models)
            conversation_state.clear()
            conversation_state.update({name: [] for name in models.values()})

            try:
                response_a = chat_with_models(
                    combined_user_input, "Model A", models_state, conversation_state
                )
                response_b = chat_with_models(
                    combined_user_input, "Model B", models_state, conversation_state
                )
            except TimeoutError as e:
                # Handle timeout by resetting components and showing a popup.
                return (
                    # [0] guardrail_message: hide
                    gr.update(visible=False),
                    # [1] shared_input: re-enable and clear
                    gr.update(value="", interactive=True, visible=True),
                    # [2] repo_url: re-enable and clear
                    gr.update(value="", interactive=True, visible=True),
                    # [3] user_prompt_md: hide
                    gr.update(value="", visible=False),
                    # [4] response_a_title: hide
                    gr.update(value="", visible=False),
                    # [5] response_b_title: hide
                    gr.update(value="", visible=False),
                    # [6] response_a: clear
                    gr.update(value=""),
                    # [7] response_b: clear
                    gr.update(value=""),
                    # [8] multi_round_inputs: hide
                    gr.update(visible=False),
                    # [9] vote_panel: hide
                    gr.update(visible=False),
                    # [10] send_first: re-enable with original text
                    gr.update(visible=True, interactive=True, value="Submit"),
                    # [11] feedback: disable
                    gr.update(interactive=False),
                    # [12] models_state: pass state as-is
                    models_state,
                    # [13] conversation_state: pass state as-is
                    conversation_state,
                    # [14] timeout_popup: show popup
                    gr.update(visible=True),
                    # [15] model_a_send: disable
                    gr.update(interactive=False),
                    # [16] model_b_send: disable
                    gr.update(interactive=False),
                    # [17] thanks_message: hide
                    gr.update(visible=False),
                )
            except Exception as e:
                raise gr.Error(str(e))

            # Determine the initial state of the multi-round send buttons
            model_a_send_state = toggle_submit_button("")
            model_b_send_state = toggle_submit_button("")

            # Return the updates for all 18 outputs.
            return (
                # [0] guardrail_message: hide (since no guardrail issue)
                gr.update(visible=False),
                # [1] shared_input: re-enable but hide
                gr.update(interactive=True, visible=False),
                # [2] repo_url: re-enable but hide
                gr.update(interactive=True, visible=False),
                # [3] user_prompt_md: display the user's query
                gr.update(value=f"**Your Query:**\n\n{user_input}", visible=True),
                # [4] response_a_title: show title for Model A
                gr.update(value="### Model A:", visible=True),
                # [5] response_b_title: show title for Model B
                gr.update(value="### Model B:", visible=True),
                # [6] response_a: display Model A response
                gr.update(value=response_a),
                # [7] response_b: display Model B response
                gr.update(value=response_b),
                # [8] multi_round_inputs: show the input section for multi-round dialogues
                gr.update(visible=True),
                # [9] vote_panel: show vote panel
                gr.update(visible=True),
                # [10] send_first: hide the submit button but restore label
                gr.update(visible=False, value="Submit"),
                # [11] feedback: enable the feedback selection
                gr.update(interactive=True),
                # [12] models_state: pass updated models_state
                models_state,
                # [13] conversation_state: pass updated conversation_state
                conversation_state,
                # [14] timeout_popup: hide any timeout popup if visible
                gr.update(visible=False),
                # [15] model_a_send: set state of the model A send button
                model_a_send_state,
                # [16] model_b_send: set state of the model B send button
                model_b_send_state,
                # [17] thanks_message: hide the thank-you message
                gr.update(visible=False),
            )

        # Feedback panel, initially hidden
        with gr.Row(visible=False) as vote_panel:
            feedback = gr.Radio(
                choices=["Model A", "Model B", "Can't Decide"],
                label="Which model do you prefer?",
                value="Can't Decide",
                interactive=False,  # Initially not interactive
            )
            submit_feedback_btn = gr.Button("Submit Feedback", interactive=False)

        thanks_message = gr.Markdown(
            value="## Thanks for your vote!", visible=False
        )  # Add thank you message

        def hide_thanks_message():
            return gr.update(visible=False)

        # Function to handle login
        def handle_login():
            """
            Handle user login using Hugging Face OAuth with automatic redirection.
            """
            try:
                # Use Hugging Face OAuth to initiate login
                HfApi()
                token = HfFolder.get_token()
                if not token:
                    raise Exception("Authentication token not found.")

                # If token is successfully retrieved, update the interface state
                return (
                    gr.update(visible=False),  # Hide the login button
                    gr.update(interactive=True),  # repo_url -> Enable in sync
                    gr.update(interactive=True),  # Enable shared_input
                    gr.update(
                        interactive=False
                    ),  # Keep send_first button disabled initially
                    gr.update(interactive=True),  # Enable feedback radio buttons
                    gr.update(interactive=True),  # Enable submit_feedback_btn
                    gr.update(visible=False),  # Hide the hint string
                )
            except Exception as e:
                # Handle login failure
                print(f"Login failed: {e}")
                return (
                    gr.update(visible=True),  # Keep the login button visible
                    gr.update(interactive=False),  # repo_url -> disable if login failed
                    gr.update(interactive=False),  # Keep shared_input disabled
                    gr.update(interactive=False),  # Keep send_first disabled
                    gr.update(
                        interactive=False
                    ),  # Keep feedback radio buttons disabled
                    gr.update(interactive=False),  # Keep submit_feedback_btn disabled
                    gr.update(visible=True),  # Show the hint string
                )

        # Handle the login button click
        login_button.click(
            handle_login,
            inputs=[],
            outputs=[
                login_button,  # Hide the login button after successful login
                repo_url,  # Keep this in sync with shared_input
                shared_input,  # Enable shared_input
                send_first,  # Enable send_first button
                feedback,  # Enable feedback radio buttons
                submit_feedback_btn,  # Enable submit_feedback_btn
                hint_markdown,  # Hide the hint string
            ],
        )

        # First round handling
        send_first.click(
            fn=hide_thanks_message, inputs=[], outputs=[thanks_message]
        ).then(
            fn=disable_first_submit_ui,  # First disable UI
            inputs=[],
            outputs=[
                guardrail_message,
                shared_input,
                repo_url,
                send_first,  # Just the essential UI elements to update immediately
            ],
        ).then(
            fn=update_model_titles_and_responses,  # Then do the actual processing
            inputs=[repo_url, shared_input, models_state, conversation_state],
            outputs=[
                guardrail_message,
                shared_input,
                repo_url,
                user_prompt_md,
                response_a_title,
                response_b_title,
                response_a,
                response_b,
                multi_round_inputs,
                vote_panel,
                send_first,
                feedback,
                models_state,
                conversation_state,
                timeout_popup,
                model_a_send,
                model_b_send,
                thanks_message,
            ],
        )

        def disable_model_a_ui():
            """First function to immediately disable model A UI elements"""
            return (
                # [0] model_a_input: disable
                gr.update(interactive=False),
                # [1] model_a_send: disable and show loading state
                gr.update(interactive=False, value="Processing..."),
            )

        # Handle subsequent rounds
        def handle_model_a_send(user_input, models_state, conversation_state):
            try:
                response = chat_with_models(
                    user_input, "Model A", models_state, conversation_state
                )
                # Clear the input box and disable the send button
                return (
                    response,
                    conversation_state,
                    gr.update(visible=False),
                    gr.update(
                        value="", interactive=True
                    ),  # Clear and enable model_a_input
                    gr.update(
                        interactive=False, value="Send to Model A"
                    ),  # Reset button text
                )
            except TimeoutError as e:
                # Disable inputs when timeout occurs
                return (
                    gr.update(value=""),  # Clear response
                    conversation_state,
                    gr.update(visible=True),  # Show the timeout popup
                    gr.update(interactive=True),  # Re-enable model_a_input
                    gr.update(
                        interactive=True, value="Send to Model A"
                    ),  # Re-enable model_a_send button
                )
            except Exception as e:
                raise gr.Error(str(e))

        def disable_model_b_ui():
            """First function to immediately disable model B UI elements"""
            return (
                # [0] model_b_input: disable
                gr.update(interactive=False),
                # [1] model_b_send: disable and show loading state
                gr.update(interactive=False, value="Processing..."),
            )

        def handle_model_b_send(user_input, models_state, conversation_state):
            try:
                response = chat_with_models(
                    user_input, "Model B", models_state, conversation_state
                )
                # Clear the input box and disable the send button
                return (
                    response,
                    conversation_state,
                    gr.update(visible=False),
                    gr.update(
                        value="", interactive=True
                    ),  # Clear and enable model_b_input
                    gr.update(
                        interactive=False, value="Send to Model B"
                    ),  # Reset button text
                )
            except TimeoutError as e:
                # Disable inputs when timeout occurs
                return (
                    gr.update(value=""),  # Clear response
                    conversation_state,
                    gr.update(visible=True),  # Show the timeout popup
                    gr.update(interactive=True),  # Re-enable model_b_input
                    gr.update(
                        interactive=True, value="Send to Model B"
                    ),  # Re-enable model_b_send button
                )
            except Exception as e:
                raise gr.Error(str(e))

        model_a_send.click(
            fn=disable_model_a_ui,  # First disable UI
            inputs=[],
            outputs=[model_a_input, model_a_send],
        ).then(
            fn=handle_model_a_send,  # Then do the actual processing
            inputs=[model_a_input, models_state, conversation_state],
            outputs=[
                response_a,
                conversation_state,
                timeout_popup,
                model_a_input,
                model_a_send,
            ],
        )
        model_b_send.click(
            fn=disable_model_b_ui,  # First disable UI
            inputs=[],
            outputs=[model_b_input, model_b_send],
        ).then(
            fn=handle_model_b_send,  # Then do the actual processing
            inputs=[model_b_input, models_state, conversation_state],
            outputs=[
                response_b,
                conversation_state,
                timeout_popup,
                model_b_input,
                model_b_send,
            ],
        )

        def submit_feedback(vote, models_state, conversation_state):
            # Map vote to actual model names
            match vote:
                case "Model A":
                    winner_model = "left"
                case "Model B":
                    winner_model = "right"
                case "Can't Decide":
                    winner_model = "tie"

            # Create feedback entry
            feedback_entry = {
                "left": models_state["Model A"],
                "right": models_state["Model B"],
                "winner": winner_model,
                "timestamp": datetime.now().strftime("%Y%m%d_%H%M%S"),
            }

            # Save feedback back to the Hugging Face dataset
            save_content_to_hf(feedback_entry, "SE-Arena/votes")

            # Save conversations back to the Hugging Face dataset
            save_content_to_hf(conversation_state, "SE-Arena/conversations")

            # Clear state
            models_state.clear()
            conversation_state.clear()

            # Adjust output count to match the interface definition
            return (
                gr.update(
                    value="", interactive=True, visible=True
                ),  # [0] Clear shared_input textbox
                gr.update(
                    value="", interactive=True, visible=True
                ),  # [1] Clear repo_url textbox
                gr.update(
                    value="", visible=False
                ),  # [2] Hide user_prompt_md markdown component
                gr.update(
                    value="", visible=False
                ),  # [3] Hide response_a_title markdown component
                gr.update(
                    value="", visible=False
                ),  # [4] Hide response_b_title markdown component
                gr.update(value=""),  # [5] Clear Model A response markdown component
                gr.update(value=""),  # [6] Clear Model B response markdown component
                gr.update(visible=False),  # [7] Hide multi_round_inputs row
                gr.update(visible=False),  # [8] Hide vote_panel row
                gr.update(
                    value="Submit", interactive=True, visible=True
                ),  # [9] Reset send_first button
                gr.update(
                    value="Can't Decide", interactive=True
                ),  # [10] Reset feedback radio selection
                get_leaderboard_data(feedback_entry),  # [11] Updated leaderboard data
                gr.update(
                    visible=True
                ),  # [12] Show the thanks_message markdown component
            )

        # Update the click event for the submit feedback button
        submit_feedback_btn.click(
            submit_feedback,
            inputs=[feedback, models_state, conversation_state],
            outputs=[
                shared_input,  # Reset shared_input
                repo_url,  # Show the repo-related URL message
                user_prompt_md,  # Hide user_prompt_md
                response_a_title,  # Hide Model A title
                response_b_title,  # Hide Model B title
                response_a,  # Clear Model A response
                response_b,  # Clear Model B response
                multi_round_inputs,  # Hide multi-round input section
                vote_panel,  # Hide vote panel
                send_first,  # Reset and update send_first button
                feedback,  # Reset feedback selection
                leaderboard_component,  # Update leaderboard data dynamically
                thanks_message,  # Show the "Thanks for your vote!" message
            ],
        )

        # Add Terms of Service at the bottom
        terms_of_service = gr.Markdown(
            """
            ## Terms of Service

            Users are required to agree to the following terms before using the service:
            
            - The service is a **research preview**. It only provides limited safety measures and may generate offensive content.
            - It must not be used for any **illegal, harmful, violent, racist, or sexual** purposes.
            - Please do not upload any **private information**.
            - The service collects user dialogue data, including both text and images, and reserves the right to distribute it under a **Creative Commons Attribution (CC-BY)** or a similar license.
            """
        )

    app.launch()