File size: 12,756 Bytes
930daa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137b0e5
 
930daa4
137b0e5
 
930daa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137b0e5
930daa4
 
 
 
 
 
 
 
 
 
 
 
137b0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930daa4
 
 
 
 
137b0e5
 
 
 
 
 
 
 
 
 
 
930daa4
 
137b0e5
930daa4
137b0e5
930daa4
137b0e5
930daa4
137b0e5
 
930daa4
137b0e5
930daa4
137b0e5
930daa4
137b0e5
930daa4
137b0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930daa4
137b0e5
930daa4
 
137b0e5
 
 
 
 
 
 
 
 
 
48a1df0
 
 
 
 
 
137b0e5
 
 
 
 
 
 
 
 
 
930daa4
48a1df0
 
137b0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930daa4
137b0e5
930daa4
48a1df0
137b0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930daa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137b0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930daa4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import evaluate
import datasets
import motmetrics as mm
import numpy as np
from seametrics.payload import Payload
import torch
from utils import bbox_iou, bbox_bep
import datasets


_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
  title={MOT16: A benchmark for multi-object tracking},
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
  journal={arXiv preprint arXiv:1603.00831},
  year={2016}
}
"""

_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT) 
algorithms by computing various metrics based on predicted and ground truth bounding 
boxes. It serves as a crucial tool in assessing the performance of MOT systems, 
aiding in the iterative improvement of tracking algorithms."""


_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    max_iou (`float`, *optional*):
        If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
        Default is 0.5.
"""

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class box_metrics(evaluate.Metric):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.boxes = {}
        self.gt_field = "ground_truth_det"


    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                "predictions": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            ),
                "references": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            )
            }),
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )


    def add_payload(self, payload: Payload):
        """Convert a payload to the format of the tracking metrics library"""
        self.add(payload)

    def add(self, payload: Payload):
        """Convert a payload to the format of the tracking metrics library"""
        self.gt_field = payload.gt_field_name
        for sequence in payload.sequences:
            self.boxes[sequence] = {}
            target = payload.sequences[sequence][self.gt_field]
            resolution = payload.sequences[sequence]["resolution"]
            target_tm = self.payload_labels_to_tm(target, resolution)
            self.boxes[sequence][self.gt_field] = target_tm

            for model in payload.models:
                preds = payload.sequences[sequence][model]
                preds_tm = self.payload_preds_to_rm(preds, resolution)
                self.boxes[sequence][model] = preds_tm
            
    def add_batch(self, predictions, references, sequence_name = "sequence"):
        """Add a batch of predictions and references to the metric
        Mainly for testing purposes
        references: list of tm boxes as [n, 5] tensors
                    box format: label, x1, y1, x2, y2
        predictions: dict of {model_name: list of tm boxes as [n, 6] tensors}
                    box format: x1, y1, x2, y2, conf, label
        """
        self.boxes[sequence_name] = {}
        self.boxes[sequence_name][self.gt_field] = []
        self.boxes[sequence_name][self.gt_field] = references
        for model in predictions:
            self.boxes[sequence_name][model] = predictions[model]


    def compute(self, 
                iou_threshold: float = 0.01, 
                only_tp = True):
        """Compute the metric value"""

        output = {}

        for sequence in self.boxes:
            ious = np.array([])
            beps = np.array([])
            e_bottom_x = np.array([])
            e_bottom_y = np.array([])
            e_widths = np.array([])
            e_heights = np.array([])
            e_n_widths = np.array([])
            e_n_heights = np.array([])
            e_n_bottom_x = np.array([])
            e_n_bottom_y = np.array([])
            
            output[sequence] = {}

            labels = self.boxes[sequence][self.gt_field]
            for model in self.boxes[sequence]:
                detections = self.boxes[sequence][model]

                for i in range(len(detections)):

                    frame_labels = labels[i]
                    frame_detections = detections[i]

                    iou = self.box_iou(frame_labels[:, 1:], frame_detections[:, :4])

                    x = torch.where(iou > iou_threshold)

                    if x[0].shape[0]:

                        matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
                        
                        if x[0].shape[0] > 1 and only_tp:
                            matches = matches[matches[:, 2].argsort()[::-1]]
                            matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                            matches = matches[matches[:, 2].argsort()[::-1]]
                            matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
                            
                    else:
                        matches = np.zeros((0, 3))

                    labels_i, detections_i, ious_v = matches.transpose()
                    labels_i = labels_i.astype(int)
                    detections_i = detections_i.astype(int)

                    for pair in zip(labels_i, detections_i, ious_v):
                        iou = pair[2]
                        t_box = frame_labels[pair[0]][1:]
                        p_box = frame_detections[pair[1]][:4]

                        bep = bbox_bep(t_box.unsqueeze(0), p_box.unsqueeze(0))
                        if iou < 0:
                            raise ValueError("IoU should be greater than 0, pls contact code maintainer")
                        if bep < 0:
                            raise ValueError("BEP should be greater than 0, pls contact code maintainer")


                        t_xc = (p_box[0].item()+p_box[2].item())/2
                        p_xc = (t_box[0].item()+t_box[2].item())/2
                        t_yc = p_box[3].item()
                        p_yc = t_box[3].item()
                        t_w = t_box[2].item()-t_box[0].item()
                        p_w = p_box[2].item()-p_box[0].item()
                        t_h = t_box[3].item()-t_box[1].item()
                        p_h = p_box[3].item()-p_box[1].item()
                        
                        if t_h < 10:
                            continue

                        ious = np.append(ious, iou)
                        beps = np.append(beps, bep)

                        e_widths = np.append(e_widths, p_w-t_w)
                        e_heights = np.append(e_heights, p_h-t_h)
                        e_bottom_x = np.append(e_bottom_x, p_xc-t_xc)
                        e_bottom_y = np.append(e_bottom_y, p_yc-t_yc)

                        e_n_widths = np.append(e_n_widths, (p_w-t_w)/t_w)
                        e_n_heights = np.append(e_n_heights, (p_h-t_h)/t_h)
                        e_n_bottom_x = np.append(e_n_bottom_x, (p_xc-t_xc)/t_w)
                        e_n_bottom_y = np.append(e_n_bottom_y, (p_yc-t_yc)/t_h)
            
            output[sequence][model] = {
                                    "iou": np.mean(ious),
                                    "bep": np.mean(beps),
                                    "e_bottom_x_mean": np.mean(e_bottom_x),
                                    "e_bottom_y_mean": np.mean(e_bottom_y),
                                    "e_width_mean": np.mean(e_widths),
                                    "e_height_mean": np.mean(e_heights),
                                    "e_n_bottom_x_mean": np.mean(e_n_bottom_x),
                                    "e_n_bottom_y_mean": np.mean(e_n_bottom_y),
                                    "e_n_width_mean": np.mean(e_n_widths),
                                    "e_n_height_mean": np.mean(e_n_heights),
                                    "e_bottom_x_std": np.std(e_bottom_x),
                                    "e_bottom_y_std": np.std(e_bottom_y),
                                    "e_width_std": np.std(e_widths),
                                    "e_height_std": np.std(e_heights),
                                    "e_n_bottom_x_std": np.std(e_n_bottom_x),
                                    "e_n_bottom_y_std": np.std(e_n_bottom_y),
                                    "e_n_width_std": np.std(e_n_widths),
                                    "e_n_height_std": np.std(e_n_heights),
                                    "n_matches": len(e_n_heights),
                                    }
            
        return output

    @staticmethod
    def summarize(result):
        """Summarize the results by model insteaf by sequence: model"""
        summary = {}
        for sequence in result:
            for model in result[sequence]:
                if model not in summary:
                    summary[model] = {}
                for metric in result[sequence][model]:
                    if metric not in summary[model]:
                        summary[model][metric] = []
                    summary[model][metric].append(result[sequence][model][metric])
        #average the results
        for model in summary:
            for metric in summary[model]:
                summary[model][metric] = np.mean(summary[model][metric])
        return summary
    
    @staticmethod
    def payload_labels_to_tm(labels, resolution):
        """Convert the labels of a payload sequence to the format of torch metrics"""
        target_tm = []
        for frame in labels:
            target_tm_frame = []
            for det in frame:
                label = 0
                box = det["bounding_box"]
                x1, y1, x2, y2 = box[0], box[1], box[0]+box[2], box[1]+box[3]
                x1, y1, x2, y2 = x1*resolution.width, y1*resolution.height, x2*resolution.width, y2*resolution.height
                target_tm_frame.append([label, x1, y1, x2, y2])
            target_tm.append(torch.tensor(target_tm_frame) if len(target_tm_frame) > 0 else torch.empty((0, 5)))

        return target_tm
    
    @staticmethod
    def payload_preds_to_rm(preds, resolution):
        """Convert the predictions of a payload sequence to the format of torch metrics"""
        preds_tm = []
        for frame in preds:
            pred_tm_frame = []
            for det in frame:
                label = 0
                box = det["bounding_box"]
                x1, y1, x2, y2 = box[0], box[1], box[0]+box[2], box[1]+box[3]
                x1, y1, x2, y2 = x1*resolution.width, y1*resolution.height, x2*resolution.width, y2*resolution.height
                conf = 1
                pred_tm_frame.append([x1, y1, x2, y2, conf, label])
            preds_tm.append(torch.tensor(pred_tm_frame) if len(pred_tm_frame) > 0 else torch.empty((0, 6)))

        return preds_tm
    
    @staticmethod
    def box_iou(box1, box2, eps=1e-7):
        # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
        """
        Return intersection-over-union (Jaccard index) of boxes.
        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
        Arguments:
            box1 (Tensor[N, 4])
            box2 (Tensor[M, 4])
        Returns:
            iou (Tensor[N, M]): the NxM matrix containing the pairwise
                IoU values for every element in boxes1 and boxes2
        """

        # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
        (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
        inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)

        # IoU = inter / (area1 + area2 - inter)
        return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)