add examples
48a1df0
raw
history blame
769 Bytes
import torch
import numpy as np
import fiftyone as fo
# from box_metrics import BoxMetrics
from seametrics.fo_utils.utils import fo_to_payload
from tqdm import tqdm
import evaluate
bbox_metric = evaluate.load("box_metrics.py")
references = [torch.tensor([
[0,0,0,50,50],
[0,50,50,100,100],
[0,100,100,150,150]
])]
predictions = {"model": [torch.tensor([
[0,0,50,50,0,0],
[50,50,90,90,0,0],
[100,100,140,140,0,0],
[100,100,130,130,0,0]
])]
}
bbox_metric.add_batch(predictions, references)
print(bbox_metric.boxes)
result = bbox_metric.compute()
for metric in result["sequence"]["model"]:
print(metric, result["sequence"]["model"][metric])