Spaces:
Sleeping
title: det-metrics
tags:
- evaluate
- metric
description: >-
Modified cocoevals.py which is wrapped into torchmetrics' mAP metric with
numpy instead of torch dependency.
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
emoji: 🕵️
SEA-AI/det-metrics
This hugging face metric uses seametrics.detection.PrecisionRecallF1Support
under the hood to compute coco-like metrics for object detection tasks. It is a modified cocoeval.py wrapped inside torchmetrics' mAP metric but with numpy arrays instead of torch tensors.
Getting Started
To get started with det-metrics, make sure you have the necessary dependencies installed. This metric relies on the evaluate
and seametrics
libraries for metric calculation and integration with FiftyOne datasets.
Installation
First, ensure you have Python 3.8 or later installed. Then, install det-metrics using pip:
pip install evaluate git+https://github.com/SEA-AI/seametrics@develop
Basic Usage
Here's how to quickly evaluate your object detection models using SEA-AI/det-metrics:
import evaluate
# Define your predictions and references (dict values can also by numpy arrays)
predictions = [
{
"boxes": [[449.3, 197.75390625, 6.25, 7.03125], [334.3, 181.58203125, 11.5625, 6.85546875]],
"labels": [0, 0],
"scores": [0.153076171875, 0.72314453125],
}
]
references = [
{
"boxes": [[449.3, 197.75390625, 6.25, 7.03125], [334.3, 181.58203125, 11.5625, 6.85546875]],
"labels": [0, 0],
"area": [132.2, 83.8],
}
]
# Load SEA-AI/det-metrics and evaluate
module = evaluate.load("SEA-AI/det-metrics")
module.add(prediction=predictions, reference=references)
results = module.compute()
print(results)
This will output the evaluation metrics for your detection model.
{'all': {'range': [0, 10000000000.0],
'iouThr': '0.00',
'maxDets': 100,
'tp': 2,
'fp': 0,
'fn': 0,
'duplicates': 0,
'precision': 1.0,
'recall': 1.0,
'f1': 1.0,
'support': 2,
'fpi': 0,
'nImgs': 1}
FiftyOne Integration
Integrate SEA-AI/det-metrics with FiftyOne datasets for enhanced analysis and visualization:
import evaluate
import logging
from seametrics.payload import PayloadProcessor
logging.basicConfig(level=logging.WARNING)
# Configure your dataset and model details
processor = PayloadProcessor(
dataset_name="SAILING_DATASET_QA",
gt_field="ground_truth_det",
models=["yolov5n6_RGB_D2304-v1_9C"],
sequence_list=["Trip_14_Seq_1"],
data_type="rgb",
)
# Evaluate using SEA-AI/det-metrics
module = evaluate.load("SEA-AI/det-metrics")
module.add_payload(processor.payload)
results = module.compute()
print(results)
{'all': {'range': [0, 10000000000.0],
'iouThr': '0.00',
'maxDets': 100,
'tp': 89,
'fp': 13,
'fn': 15,
'duplicates': 1,
'precision': 0.8725490196078431,
'recall': 0.8557692307692307,
'f1': 0.8640776699029126,
'support': 104,
'fpi': 0,
'nImgs': 22}}
Metric Settings
Customize your evaluation by specifying various parameters when loading SEA-AI/det-metrics:
- area_ranges_tuples: Define different area ranges for metrics calculation.
- bbox_format: Set the bounding box format (e.g.,
"xywh"
). - iou_threshold: Choose the IOU threshold for determining correct detections.
- class_agnostic: Specify whether to calculate metrics disregarding class labels.
area_ranges_tuples = [
("all", [0, 1e5**2]),
("small", [0**2, 6**2]),
("medium", [6**2, 12**2]),
("large", [12**2, 1e5**2]),
]
module = evaluate.load(
"SEA-AI/det-metrics",
iou_thresholds=[0.00001],
area_ranges_tuples=area_ranges_tuples,
)
Output Values
SEA-AI/det-metrics provides a detailed breakdown of performance metrics for each specified area range:
- range: The area range considered.
- iouThr: The IOU threshold applied.
- maxDets: The maximum number of detections evaluated.
- tp/fp/fn: Counts of true positives, false positives, and false negatives.
- duplicates: Number of duplicate detections.
- precision/recall/f1: Calculated precision, recall, and F1 score.
- support: Number of ground truth boxes considered.
- fpi: Number of images with predictions but no ground truths.
- nImgs: Total number of images evaluated.
Further References
- seametrics Library: Explore the seametrics GitHub repository for more details on the underlying library.
- Pycoco Tools: SEA-AI/det-metrics calculations are based on pycoco tools, a widely used library for COCO dataset evaluation.
- Understanding Metrics: For a deeper understanding of precision, recall, and other metrics, read this comprehensive guide.
Contribution
Your contributions are welcome! If you'd like to improve SEA-AI/det-metrics or add new features, please feel free to fork the repository, make your changes, and submit a pull request.