Spaces:
Running
Running
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
from typing import List, Literal, Tuple | |
import datasets | |
import evaluate | |
import numpy as np | |
from deprecated import deprecated | |
from seametrics.detection import PrecisionRecallF1Support | |
from seametrics.payload import Payload | |
_CITATION = """\ | |
@InProceedings{coco:2020, | |
title = {Microsoft {COCO:} Common Objects in Context}, | |
authors={Tsung{-}Yi Lin and | |
Michael Maire and | |
Serge J. Belongie and | |
James Hays and | |
Pietro Perona and | |
Deva Ramanan and | |
Piotr Dollar and | |
C. Lawrence Zitnick}, | |
booktitle = {Computer Vision - {ECCV} 2014 - 13th European Conference, Zurich, | |
Switzerland, September 6-12, 2014, Proceedings, Part {V}}, | |
series = {Lecture Notes in Computer Science}, | |
volume = {8693}, | |
pages = {740--755}, | |
publisher = {Springer}, | |
year={2014} | |
} | |
""" | |
_DESCRIPTION = """\ | |
This evaluation metric is designed to give provide object detection metrics at | |
different object size levels. It is based on a modified version of the commonly used | |
COCO-evaluation metrics. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates object detection metrics given predicted and ground truth bounding boxes for | |
a single image. | |
Args: | |
predictions: list of predictions for each image. Each prediction should | |
be a dict containing the following | |
- 'boxes': list of bounding boxes, xywh in absolute pixel values | |
- 'labels': list of labels for each bounding box | |
- 'scores': list of scores for each bounding box | |
references: list of ground truth annotations for each image. Each reference should | |
be a dict containing the following | |
- 'boxes': list of bounding boxes, xywh in absolute pixel values | |
- 'labels': list of labels for each bounding box | |
- 'area': list of areas for each bounding box | |
Returns: | |
dict containing dicts for each specified area range with following items: | |
'range': specified area with [max_px_area, max_px_area] | |
'iouThr': min. IOU-threshold of a prediction with a ground truth box | |
to be considered a correct prediction | |
'maxDets': maximum number of detections | |
'tp': number of true positive (correct) predictions | |
'fp': number of false positive (incorrect) predictions | |
'fn': number of false negative (missed) predictions | |
'duplicates': number of duplicate predictions | |
'precision': best possible score = 1, worst possible score = 0 | |
large if few false positive predictions | |
formula: tp/(fp+tp) | |
'recall' best possible score = 1, worst possible score = 0 | |
large if few missed predictions | |
formula: tp/(tp+fn) | |
'f1': best possible score = 1, worst possible score = 0 | |
trades off precision and recall | |
formula: 2*(precision*recall)/(precision+recall) | |
'support': number of ground truth bounding boxes considered in the evaluation, | |
'fpi': number of images with no ground truth but false positive predictions, | |
'nImgs': number of images considered in evaluation | |
Examples: | |
>>> import evaluate | |
>>> from seametrics.payload.processor import PayloadProcessor | |
>>> payload = PayloadProcessor(...).payload | |
>>> module = evaluate.load("SEA-AI/det-metrics", ...) | |
>>> module.add_payload(payload) | |
>>> result = module.compute() | |
>>> print(result) | |
{'all': { | |
'range': [0, 10000000000.0], | |
'iouThr': '0.00', | |
'maxDets': 100, | |
'tp': 1, | |
'fp': 3, | |
'fn': 1, | |
'duplicates': 0, | |
'precision': 0.25, | |
'recall': 0.5, | |
'f1': 0.3333333333333333, | |
'support': 2, | |
'fpi': 0, | |
'nImgs': 2 | |
} | |
} | |
""" | |
class DetectionMetric(evaluate.Metric): | |
def __init__( | |
self, | |
area_ranges_tuples: List[Tuple[str, List[int]]] = [("all", [0, 1e5**2])], | |
iou_threshold: List[float] = [1e-10], | |
class_agnostic: bool = True, | |
bbox_format: str = "xywh", | |
iou_type: Literal["bbox", "segm"] = "bbox", | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
self.coco_metric = PrecisionRecallF1Support( | |
iou_thresholds=( | |
iou_threshold if isinstance(iou_threshold, list) else [iou_threshold] | |
), | |
area_ranges=[v for _, v in area_ranges_tuples], | |
area_ranges_labels=[k for k, _ in area_ranges_tuples], | |
class_agnostic=class_agnostic, | |
iou_type=iou_type, | |
box_format=bbox_format, | |
) | |
def _info(self): | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": [ | |
datasets.Features( | |
{ | |
"boxes": datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
), | |
"labels": datasets.Sequence(datasets.Value("int64")), | |
"scores": datasets.Sequence(datasets.Value("float")), | |
} | |
) | |
], | |
"references": [ | |
datasets.Features( | |
{ | |
"boxes": datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
), | |
"labels": datasets.Sequence(datasets.Value("int64")), | |
"area": datasets.Sequence(datasets.Value("float")), | |
} | |
) | |
], | |
} | |
), | |
# Additional links to the codebase or references | |
codebase_urls=[ | |
"https://github.com/SEA-AI/seametrics/tree/main", | |
"https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html", | |
], | |
) | |
def add(self, *, prediction, reference, **kwargs): | |
"""Adds a batch of predictions and references to the metric""" | |
# in case the inputs are lists, convert them to numpy arrays | |
prediction = self._preprocess(prediction) | |
reference = self._preprocess(reference) | |
self.coco_metric.update(prediction, reference) | |
# does not impact the metric, but is required for the interface x_x | |
super(evaluate.Metric, self).add( | |
prediction=self._postprocess(prediction), | |
references=self._postprocess(reference), | |
**kwargs | |
) | |
def add_batch(self, payload: Payload, model_name: str = None): | |
"""Takes as input a payload and adds the batch to the metric""" | |
self.add_payload(payload, model_name) | |
def _compute(self, *, predictions, references, **kwargs): | |
"""Called within the evaluate.Metric.compute() method""" | |
return self.coco_metric.compute() | |
def add_payload(self, payload: Payload, model_name: str = None): | |
"""Converts the payload to the format expected by the metric""" | |
# import only if needed since fiftyone is not a direct dependency | |
from seametrics.detection.utils import payload_to_det_metric | |
predictions, references = payload_to_det_metric(payload, model_name) | |
self.add(prediction=predictions, reference=references) | |
return self | |
def _preprocess(self, list_of_dicts): | |
"""Converts the lists to numpy arrays for type checking""" | |
return [self._lists_to_np(d) for d in list_of_dicts] | |
def _postprocess(self, list_of_dicts): | |
"""Converts the numpy arrays to lists for type checking""" | |
return [self._np_to_lists(d) for d in list_of_dicts] | |
def _np_to_lists(self, d): | |
"""datasets does not support numpy arrays for type checking""" | |
for k, v in d.items(): | |
if isinstance(v, dict): | |
self._np_to_lists(v) | |
elif isinstance(v, np.ndarray): | |
d[k] = v.tolist() | |
return d | |
def _lists_to_np(self, d): | |
"""datasets does not support numpy arrays for type checking""" | |
for k, v in d.items(): | |
if isinstance(v, dict): | |
self._lists_to_np(v) | |
elif isinstance(v, list): | |
d[k] = np.array(v) | |
return d | |
def compute_for_multiple_models(self, payload): | |
results = {} | |
for model_name in payload.models: | |
self.add_payload(payload, model_name) | |
results[model_name] = self._compute() | |
return results | |
def generate_confidence_curves(self, results, models, confidence_config = {"T":0, | |
"R":0, | |
"K":0, | |
"A":0, | |
"M":0}): | |
import plotly.graph_objects as go | |
from seametrics.detection.utils import get_confidence_metric_vals | |
# Create traces | |
fig = go.Figure() | |
metrics = ['precision', 'recall', 'f1'] | |
for model in models: | |
plot_data = get_confidence_metric_vals( | |
cocoeval=results[model['name']]['eval'], | |
T=confidence_config['T'], | |
R=confidence_config['R'], | |
K=confidence_config['K'], | |
A=confidence_config['A'], | |
M=confidence_config['M'] | |
) | |
for metric in metrics: | |
fig.add_trace( | |
go.Scatter( | |
x=plot_data['conf'], | |
y=plot_data[metric], | |
mode='lines', | |
name=f"{model['name'].split('_')[0]} {metric}", | |
line=dict(dash=None if metric == 'f1' else 'dash'), | |
) | |
) | |
fig.update_layout( | |
title="Metric vs Confidence", | |
hovermode='x unified', | |
xaxis_title="Confidence", | |
yaxis_title="Metric value") | |
fig.show() | |
return fig | |