franzi2505's picture
add files
f965db0
raw
history blame
30.4 kB
__author__ = 'tsungyi, [email protected]'
# This is a modified version of the original cocoeval.py
# In this version we are able to return the TP, FP, and FN values
# along with the other default metrics.
import numpy as np
import datetime
import time
from collections import defaultdict
from pycocotools import mask as maskUtils
import copy
class COCOeval:
# Interface for evaluating detection on the Microsoft COCO dataset.
#
# The usage for CocoEval is as follows:
# cocoGt=..., cocoDt=... # load dataset and results
# E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
# E.params.recThrs = ...; # set parameters as desired
# E.evaluate(); # run per image evaluation
# E.accumulate(); # accumulate per image results
# E.summarize(); # display summary metrics of results
# For example usage see evalDemo.m and http://mscoco.org/.
#
# The evaluation parameters are as follows (defaults in brackets):
# imgIds - [all] N img ids to use for evaluation
# catIds - [all] K cat ids to use for evaluation
# iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation
# recThrs - [0:.01:1] R=101 recall thresholds for evaluation
# areaRng - [...] A=4 object area ranges for evaluation
# maxDets - [1 10 100] M=3 thresholds on max detections per image
# iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'
# iouType replaced the now DEPRECATED useSegm parameter.
# useCats - [1] if true use category labels for evaluation
# Note: if useCats=0 category labels are ignored as in proposal scoring.
# Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
#
# evaluate(): evaluates detections on every image and every category and
# concats the results into the "evalImgs" with fields:
# dtIds - [1xD] id for each of the D detections (dt)
# gtIds - [1xG] id for each of the G ground truths (gt)
# dtMatches - [TxD] matching gt id at each IoU or 0
# gtMatches - [TxG] matching dt id at each IoU or 0
# dtScores - [1xD] confidence of each dt
# gtIgnore - [1xG] ignore flag for each gt
# dtIgnore - [TxD] ignore flag for each dt at each IoU
#
# accumulate(): accumulates the per-image, per-category evaluation
# results in "evalImgs" into the dictionary "eval" with fields:
# params - parameters used for evaluation
# date - date evaluation was performed
# counts - [T,R,K,A,M] parameter dimensions (see above)
# precision - [TxRxKxAxM] precision for every evaluation setting
# recall - [TxKxAxM] max recall for every evaluation setting
# TP - [TxKxAxM] number of true positives for every eval setting [NEW]
# FP - [TxKxAxM] number of false positives for every eval setting [NEW]
# FN - [TxKxAxM] number of false negatives for every eval setting [NEW]
# Note: precision and recall==-1 for settings with no gt objects.
#
# See also coco, mask, pycocoDemo, pycocoEvalDemo
#
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
# Licensed under the Simplified BSD License [see coco/license.txt]
def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'):
'''
Initialize CocoEval using coco APIs for gt and dt
:param cocoGt: coco object with ground truth annotations
:param cocoDt: coco object with detection results
:return: None
'''
if not iouType:
print('iouType not specified. use default iouType segm')
self.cocoGt = cocoGt # ground truth COCO API
self.cocoDt = cocoDt # detections COCO API
self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iouType=iouType) # parameters
self._paramsEval = {} # parameters for evaluation
self.stats = [] # result summarization
self.ious = {} # ious between all gts and dts
if not cocoGt is None:
self.params.imgIds = sorted(cocoGt.getImgIds())
self.params.catIds = sorted(cocoGt.getCatIds())
def _prepare(self):
'''
Prepare ._gts and ._dts for evaluation based on params
:return: None
'''
def _toMask(anns, coco):
# modify ann['segmentation'] by reference
for ann in anns:
rle = coco.annToRLE(ann)
ann['segmentation'] = rle
p = self.params
if p.useCats:
gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
else:
gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
# convert ground truth to mask if iouType == 'segm'
if p.iouType == 'segm':
_toMask(gts, self.cocoGt)
_toMask(dts, self.cocoDt)
# set ignore flag
for gt in gts:
gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0
gt['ignore'] = 'iscrowd' in gt and gt['iscrowd']
if p.iouType == 'keypoints':
gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore']
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
for gt in gts:
self._gts[gt['image_id'], gt['category_id']].append(gt)
for dt in dts:
self._dts[dt['image_id'], dt['category_id']].append(dt)
self.evalImgs = defaultdict(list) # per-image per-category evaluation results
self.eval = {} # accumulated evaluation results
def evaluate(self):
'''
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
'''
tic = time.time()
print('Running per image evaluation...')
p = self.params
# add backward compatibility if useSegm is specified in params
if not p.useSegm is None:
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
print('Evaluate annotation type *{}*'.format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params=p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == 'segm' or p.iouType == 'bbox':
computeIoU = self.computeIoU
elif p.iouType == 'keypoints':
computeIoU = self.computeOks
self.ious = {(imgId, catId): computeIoU(imgId, catId) \
for imgId in p.imgIds
for catId in catIds}
evaluateImg = self.evaluateImg
maxDet = p.maxDets[-1]
self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
self._paramsEval = copy.deepcopy(self.params)
toc = time.time()
print('DONE (t={:0.2f}s).'.format(toc-tic))
def computeIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId,catId]
dt = self._dts[imgId,catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
if len(gt) == 0 and len(dt) ==0:
return []
inds = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt=dt[0:p.maxDets[-1]]
if p.iouType == 'segm':
g = [g['segmentation'] for g in gt]
d = [d['segmentation'] for d in dt]
elif p.iouType == 'bbox':
g = [g['bbox'] for g in gt]
d = [d['bbox'] for d in dt]
else:
raise Exception('unknown iouType for iou computation')
# compute iou between each dt and gt region
iscrowd = [int(o['iscrowd']) for o in gt]
ious = maskUtils.iou(d,g,iscrowd)
return ious
def computeOks(self, imgId, catId):
p = self.params
# dimention here should be Nxm
gts = self._gts[imgId, catId]
dts = self._dts[imgId, catId]
inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
dts = [dts[i] for i in inds]
if len(dts) > p.maxDets[-1]:
dts = dts[0:p.maxDets[-1]]
# if len(gts) == 0 and len(dts) == 0:
if len(gts) == 0 or len(dts) == 0:
return []
ious = np.zeros((len(dts), len(gts)))
sigmas = p.kpt_oks_sigmas
vars = (sigmas * 2)**2
k = len(sigmas)
# compute oks between each detection and ground truth object
for j, gt in enumerate(gts):
# create bounds for ignore regions(double the gt bbox)
g = np.array(gt['keypoints'])
xg = g[0::3]; yg = g[1::3]; vg = g[2::3]
k1 = np.count_nonzero(vg > 0)
bb = gt['bbox']
x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2
for i, dt in enumerate(dts):
d = np.array(dt['keypoints'])
xd = d[0::3]; yd = d[1::3]
if k1>0:
# measure the per-keypoint distance if keypoints visible
dx = xd - xg
dy = yd - yg
else:
# measure minimum distance to keypoints in (x0,y0) & (x1,y1)
z = np.zeros((k))
dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0)
dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0)
e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2
if k1 > 0:
e=e[vg > 0]
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
return ious
def is_bbox1_inside_bbox2(self, bbox1, bbox2):
'''
Check if bbox1 is inside bbox2. Bbox is in the format [x, y, w, h]
Returns:
- True if bbox1 is inside bbox2, False otherwise
- How much bbox1 is inside bbox2 (number between 0 and 1)
'''
x1_1, y1_1, w1_1, h1_1 = bbox1
x1_2, y1_2, w1_2, h1_2 = bbox2
# Convert xywh to (x, y, x2, y2) format
x2_1, y2_1 = x1_1 + w1_1, y1_1 + h1_1
x2_2, y2_2 = x1_2 + w1_2, y1_2 + h1_2
# Calculate the coordinates of the intersection rectangle
x_left, y_top = max(x1_1, x1_2), max(y1_1, y1_2)
x_right, y_bottom = min(x2_1, x2_2), min(y2_1, y2_2)
print(f"{x_left=}, {x_right=}, {y_top=}, {y_bottom=}")
if x_right < x_left or y_bottom < y_top:
return False, 0
intersection_area = (x_right - x_left) * (y_bottom - y_top)
print(f"{intersection_area=}")
return True, intersection_area / (w1_1 * h1_1)
def evaluateImg(self, imgId, catId, aRng, maxDet):
'''
perform evaluation for single category and image
:return: dict (single image results)
'''
p = self.params
if p.useCats:
gt = self._gts[imgId,catId]
dt = self._dts[imgId,catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
if len(gt) == 0 and len(dt) ==0:
return None
for g in gt:
if g['ignore'] or (g['area']<aRng[0] or g['area']>aRng[1]):
g['_ignore'] = 1
else:
g['_ignore'] = 0
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in dtind[0:maxDet]]
iscrowd = [int(o['iscrowd']) for o in gt]
# load computed ious
ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId]
T = len(p.iouThrs)
G = len(gt)
D = len(dt)
gtm = np.zeros((T,G))
dtm = np.zeros((T,D))
gtIg = np.array([g['_ignore'] for g in gt])
dtIg = np.zeros((T,D))
dtDup = np.zeros((T,D))
if not len(ious)==0:
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t,1-1e-10])
m = -1
for gind, g in enumerate(gt):
# if this gt already matched, iou>iouThr, and not a crowd
# store detection as duplicate
if gtm[tind,gind]>0 and ious[dind,gind]>t and not iscrowd[gind]:
dtDup[tind, dind] = d['id']
# if this gt already matched, and not a crowd, continue
if gtm[tind,gind]>0 and not iscrowd[gind]:
continue
# if dt matched to reg gt, and on ignore gt, stop
if m > -1 and gtIg[m]==0 and gtIg[gind]==1:
break
# continue to next gt unless better match made
if ious[dind,gind] < iou:
continue
# if match successful and best so far, store appropriately
iou=ious[dind,gind]
m=gind
# if match made store id of match for both dt and gt
if m ==-1:
continue
dtIg[tind,dind] = gtIg[m]
dtm[tind,dind] = gt[m]['id']
gtm[tind,m] = d['id']
# set unmatched detections outside of area range to ignore
a = np.array([d['area']<aRng[0] or d['area']>aRng[1] for d in dt]).reshape((1, len(dt)))
dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0)))
# only consider duplicates if dets are inside the area range
dtDup = np.logical_and(dtDup, np.logical_and(dtm==0, np.logical_not(np.repeat(a,T,0))))
# false positive img (fpi) when all gt are ignored and there remain detections
fpi = (gtIg.sum() == G) and np.any(dtIg == 0)
# store results for given image and category
return {
'image_id': imgId,
'category_id': catId,
'aRng': aRng,
'maxDet': maxDet,
'dtIds': [d['id'] for d in dt],
'gtIds': [g['id'] for g in gt],
'dtMatches': dtm,
'gtMatches': gtm,
'dtScores': [d['score'] for d in dt],
'gtIgnore': gtIg,
'dtIgnore': dtIg,
'dtDuplicates': dtDup,
'fpi': fpi,
}
def accumulate(self, p = None):
'''
Accumulate per image evaluation results and store the result in self.eval
:param p: input params for evaluation
:return: None
'''
print('Accumulating evaluation results...')
tic = time.time()
if not self.evalImgs:
print('Please run evaluate() first')
# allows input customized parameters
if p is None:
p = self.params
p.catIds = p.catIds if p.useCats == 1 else [-1]
T = len(p.iouThrs)
R = len(p.recThrs)
K = len(p.catIds) if p.useCats else 1
A = len(p.areaRng)
M = len(p.maxDets)
precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories
recall = -np.ones((T,K,A,M))
scores = -np.ones((T,R,K,A,M))
TP = -np.ones((T,K,A,M))
FP = -np.ones((T,K,A,M))
FN = -np.ones((T,K,A,M))
duplicates = -np.ones((T,K,A,M))
FPI = -np.ones((T,K,A,M))
# matrix of arrays
TPC = np.empty((T,K,A,M), dtype=object)
FPC = np.empty((T,K,A,M), dtype=object)
sorted_conf = np.empty((K,A,M), dtype=object)
# create dictionary for future indexing
_pe = self._paramsEval
catIds = _pe.catIds if _pe.useCats else [-1]
setK = set(catIds)
setA = set(map(tuple, _pe.areaRng))
setM = set(_pe.maxDets)
setI = set(_pe.imgIds)
# get inds to evaluate
k_list = [n for n, k in enumerate(p.catIds) if k in setK]
m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
I0 = len(_pe.imgIds)
A0 = len(_pe.areaRng)
# retrieve E at each category, area range, and max number of detections
for k, k0 in enumerate(k_list):
Nk = k0*A0*I0
for a, a0 in enumerate(a_list):
Na = a0*I0
for m, maxDet in enumerate(m_list):
E = [self.evalImgs[Nk + Na + i] for i in i_list]
E = [e for e in E if not e is None]
if len(E) == 0:
continue
dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E])
# different sorting method generates slightly different results.
# mergesort is used to be consistent as Matlab implementation.
inds = np.argsort(-dtScores, kind='mergesort')
dtScoresSorted = dtScores[inds]
sorted_conf[k,a,m] = dtScoresSorted.copy()
dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds]
dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds]
dtDups = np.concatenate([e['dtDuplicates'][:,0:maxDet] for e in E], axis=1)[:,inds]
gtIg = np.concatenate([e['gtIgnore'] for e in E])
npig = np.count_nonzero(gtIg==0) # number of not ignored gt objects
fpi = np.array([e['fpi'] for e in E]) # false positive image (no gt objects)
# if npig == 0:
# print("No ground truth objects, continuing...")
# continue
tps = np.logical_and( dtm, np.logical_not(dtIg) )
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) )
tp_sum = np.cumsum(tps, axis=1).astype(dtype=float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=float)
fpi_sum = np.cumsum(fpi).astype(dtype=int)
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
fn = npig - tp # difference between gt and tp
nd = len(tp)
rc = tp / npig if npig else [0]
pr = tp / (fp+tp+np.spacing(1))
q = np.zeros((R,))
ss = np.zeros((R,)) #
if nd:
recall[t,k,a,m] = rc[-1]
else:
recall[t,k,a,m] = 0
TP[t,k,a,m] = tp[-1] if nd else 0
FP[t,k,a,m] = fp[-1] if nd else 0
FN[t,k,a,m] = fn[-1] if nd else npig
duplicates[t,k,a,m] = np.sum(dtDups[t, :])
FPI[t,k,a,m] = fpi_sum[-1]
TPC[t,k,a,m] = tp.copy()
FPC[t,k,a,m] = fp.copy()
# numpy is slow without cython optimization for accessing elements
# use python array gets significant speed improvement
pr = pr.tolist(); q = q.tolist()
for i in range(nd-1, 0, -1):
if pr[i] > pr[i-1]:
pr[i-1] = pr[i]
inds = np.searchsorted(rc, p.recThrs, side='left')
try:
for ri, pi in enumerate(inds):
q[ri] = pr[pi]
ss[ri] = dtScoresSorted[pi]
except:
pass
precision[t,:,k,a,m] = np.array(q)
scores[t,:,k,a,m] = np.array(ss)
self.eval = {
'params': p,
'counts': [T, R, K, A, M],
'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'precision': precision,
'recall': recall,
'scores': scores,
'TP': TP,
'FP': FP,
'FN': FN,
'duplicates': duplicates,
'support': TP + FN,
'FPI': FPI,
'TPC': TPC,
'FPC': FPC,
'sorted_conf': sorted_conf,
}
toc = time.time()
print('DONE (t={:0.2f}s).'.format( toc-tic))
def summarize(self):
results = {}
max_dets = self.params.maxDets[-1]
min_iou = self.params.iouThrs[0]
results['params'] = self.params
results['eval'] = self.eval
results['metrics'] = {}
# for area_lbl in self.params.areaRngLbl:
# results.append(self._summarize('ap', iouThr=min_iou,
# areaRng=area_lbl, maxDets=max_dets))
# for area_lbl in self.params.areaRngLbl:
# results.append(self._summarize('ar', iouThr=min_iou,
# areaRng=area_lbl, maxDets=max_dets))
metrics_str = f"{'tp':>6}, {'fp':>6}, {'fn':>6}, {'dup':>6}, "
metrics_str += f"{'pr':>5.2}, {'rec':>5.2}, {'f1':>5.2}, {'supp':>6}"
metrics_str += f", {'fpi':>6}, {'nImgs':>6}"
print('{:>51} {}'.format('METRIC', metrics_str))
for area_lbl in self.params.areaRngLbl:
results['metrics'][area_lbl] = self._summarize(
'pr_rec_f1',
iouThr=min_iou,
areaRng=area_lbl,
maxDets=max_dets
)
return results
def _summarize(self, metric_type='ap', iouThr=None, areaRng='all', maxDets=100):
"""
Helper function to print and obtain metrics of types:
- ap: average precision
- ar: average recall
- cf: tp, fp, fn, precision, recall, f1
values from COCOeval object
"""
def _summarize_ap_ar(ap=1, iouThr=None, areaRng='all', maxDets=100):
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap == 1 else '(AR)'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
aind = [i for i, aRng in enumerate(
p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
return mean_s
def _summarize_pr_rec_f1(iouThr=None, areaRng='all', maxDets=100):
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
# dimension of TP, FP, FN [TxKxAxM]
tp = self.eval['TP']
fp = self.eval['FP']
fn = self.eval['FN']
dup = self.eval['duplicates']
fpi = self.eval['FPI']
nImgs = len(p.imgIds)
# filter by IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
tp, fp, fn = tp[t], fp[t], fn[t]
dup = dup[t]
fpi = fpi[t]
# filter by area and maxDets
tp = tp[:, :, aind, mind].squeeze()
fp = fp[:, :, aind, mind].squeeze()
fn = fn[:, :, aind, mind].squeeze()
dup = dup[:, :, aind, mind].squeeze()
fpi = fpi[:, :, aind, mind].squeeze()
# handle case where tp, fp, fn and dup are empty (no gt and no dt)
if all([not np.any(m) for m in [tp, fp, fn, dup, fpi]]):
tp, fp, fn, dup, fpi =[-1] * 5
else:
tp, fp, fn, dup, fpi = [e.item() for e in [tp, fp, fn, dup, fpi]]
# compute precision, recall, f1
if tp == -1 and fp == -1 and fn == -1:
pr, rec, f1 = -1, -1, -1
support, fpi = 0, 0
else:
pr = 0 if tp + fp == 0 else tp / (tp + fp)
rec = 0 if tp + fn == 0 else tp / (tp + fn)
f1 = 0 if pr + rec == 0 else 2 * pr * rec / (pr + rec)
support = tp + fn
# print(f"{tp=}, {fp=}, {fn=}, {dup=}, {pr=}, {rec=}, {f1=}, {support=}, {fpi=}")
iStr = '@[ IoU={:<9} | area={:>9s} | maxDets={:>3d} ] = {}'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
metrics_str = f"{tp:>6.0f}, {fp:>6.0f}, {fn:>6.0f}, {dup:>6.0f}, "
metrics_str += f"{pr:>5.2f}, {rec:>5.2f}, {f1:>5.2f}, {support:>6.0f}, "
metrics_str += f"{fpi:>6.0f}, {nImgs:>6.0f}"
print(iStr.format(iouStr, areaRng, maxDets, metrics_str))
return {
'range': p.areaRng[aind[0]],
'iouThr': iouStr,
'maxDets': maxDets,
'tp': int(tp),
'fp': int(fp),
'fn': int(fn),
'duplicates': int(dup),
'precision': pr,
'recall': rec,
'f1': f1,
'support': int(support),
'fpi': int(fpi),
'nImgs': nImgs,
}
p = self.params
if metric_type in ['ap', 'ar']:
ap = 1 if metric_type == 'ap' else 0
return _summarize_ap_ar(ap, iouThr=iouThr, areaRng=areaRng, maxDets=maxDets)
# return tp, fp, fn, pr, rec, f1, support, fpi, nImgs
return _summarize_pr_rec_f1(iouThr=iouThr, areaRng=areaRng, maxDets=maxDets)
def __str__(self):
self.summarize()
class Params:
'''
Params for coco evaluation api
'''
def setDetParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
self.maxDets = [1, 10, 100]
self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
self.areaRngLbl = ['all', 'small', 'medium', 'large']
self.useCats = 1
def setKpParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
self.maxDets = [20]
self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
self.areaRngLbl = ['all', 'medium', 'large']
self.useCats = 1
self.kpt_oks_sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0
def __init__(self, iouType='segm'):
if iouType == 'segm' or iouType == 'bbox':
self.setDetParams()
elif iouType == 'keypoints':
self.setKpParams()
else:
raise Exception('iouType not supported')
self.iouType = iouType
# useSegm is deprecated
self.useSegm = None
def __repr__(self) -> str:
return str(self.__dict__)
def __iter__(self):
return iter(self.__dict__.items())