Spaces:
Sleeping
Sleeping
# Copyright The PyTorch Lightning team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# NOTE: This metric is based on torchmetrics.detection.mean_ap and | |
# then modified to support the evaluation of precision, recall, f1 and support | |
# for object detection. It can also be used to evaluate the mean average precision | |
# but some modifications are needed. Additionally, numpy is used instead of torch | |
import contextlib | |
import io | |
import json | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
from typing_extensions import Literal | |
import numpy as np | |
from modified_coco.utils import _fix_empty_arrays, _input_validator, box_convert | |
try: | |
import pycocotools.mask as mask_utils | |
from pycocotools.coco import COCO | |
# from pycocotools.cocoeval import COCOeval | |
from modified_coco.cocoeval import COCOeval # use our own version of COCOeval | |
except ImportError: | |
raise ModuleNotFoundError( | |
"`MAP` metric requires that `pycocotools` installed." | |
" Please install with `pip install pycocotools`" | |
) | |
class PrecisionRecallF1Support: | |
r"""Compute the Precision, Recall, F1 and Support scores for object detection. | |
- Precision = :math:`\frac{TP}{TP + FP}` | |
- Recall = :math:`\frac{TP}{TP + FN}` | |
- F1 = :math:`\frac{2 * Precision * Recall}{Precision + Recall}` | |
- Support = :math:`TP + FN` | |
As input to ``forward`` and ``update`` the metric accepts the following input: | |
- ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values | |
(each dictionary corresponds to a single image). Parameters that should be provided per dict: | |
- boxes: (:class:`~np.ndarray`) of shape ``(num_boxes, 4)`` containing ``num_boxes`` | |
detection boxes of the format specified in the constructor. By default, this method expects | |
``(xmin, ymin, xmax, ymax)`` in absolute image coordinates. | |
- scores: :class:`~np.ndarray` of shape ``(num_boxes)`` containing detection scores | |
for the boxes. | |
- labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed detection | |
classes for the boxes. | |
- masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)`` containing | |
boolean masks. Only required when `iou_type="segm"`. | |
- ``target`` (:class:`~List`) A list consisting of dictionaries each containing the key-values | |
(each dictionary corresponds to a single image). Parameters that should be provided per dict: | |
- boxes: :class:`~np.ndarray` of shape ``(num_boxes, 4)`` containing ``num_boxes`` | |
ground truth boxes of the format specified in the constructor. By default, this method | |
expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates. | |
- labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed ground | |
truth classes for the boxes. | |
- masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)`` | |
containing boolean masks. Only required when `iou_type="segm"`. | |
- iscrowd: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0/1 values | |
indicating whether the bounding box/masks indicate a crowd of objects. Value is optional, | |
and if not provided it will automatically be set to 0. | |
- area: :class:`~np.ndarray` of shape ``(num_boxes)`` containing the area of the | |
object. Value if optional, and if not provided will be automatically calculated based | |
on the bounding box/masks provided. Only affects when 'area_ranges' is provided. | |
As output of ``forward`` and ``compute`` the metric returns the following output: | |
- ``results``: A dictionary containing the following key-values: | |
- ``params``: COCOeval parameters object | |
- ``eval``: output of COCOeval.accumuate() | |
- ``metrics``: A dictionary containing the following key-values for each area range: | |
- ``area_range``: str containing the area range | |
- ``iouThr``: str containing the IoU threshold | |
- ``maxDets``: int containing the maximum number of detections | |
- ``tp``: int containing the number of true positives | |
- ``fp``: int containing the number of false positives | |
- ``fn``: int containing the number of false negatives | |
- ``precision``: float containing the precision | |
- ``recall``: float containing the recall | |
- ``f1``: float containing the f1 score | |
- ``support``: int containing the support (tp + fn) | |
.. note:: | |
This metric utilizes the official `pycocotools` implementation as its backend. This means that the metric | |
requires you to have `pycocotools` installed. In addition we require `torchvision` version 0.8.0 or newer. | |
Please install with ``pip install torchmetrics[detection]``. | |
Args: | |
box_format: | |
Input format of given boxes. Supported formats are ``[xyxy, xywh, cxcywh]``. | |
iou_type: | |
Type of input (either masks or bounding-boxes) used for computing IOU. | |
Supported IOU types are ``["bbox", "segm"]``. If using ``"segm"``, masks should be provided in input. | |
iou_thresholds: | |
IoU thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0.5,...,0.95]`` | |
with step ``0.05``. Else provide a list of floats. | |
rec_thresholds: | |
Recall thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0,...,1]`` | |
with step ``0.01``. Else provide a list of floats. | |
max_detection_thresholds: | |
Thresholds on max detections per image. If set to `None` will use thresholds ``[100]``. | |
Else, please provide a list of ints. | |
area_ranges: | |
Area ranges for evaluation. If set to ``None`` it corresponds to the ranges ``[[0^2, 1e5^2]]``. | |
Else, please provide a list of lists of length 2. | |
area_ranges_labels: | |
Labels for the area ranges. If set to ``None`` it corresponds to the labels ``["all"]``. | |
Else, please provide a list of strings of the same length as ``area_ranges``. | |
class_agnostic: | |
If ``True`` will compute metrics globally. If ``False`` will compute metrics per class. | |
Default: ``True`` (per class metrics are not supported yet) | |
debug: | |
If ``True`` will print the COCOEval summary to stdout. | |
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. | |
Raises: | |
ValueError: | |
If ``box_format`` is not one of ``"xyxy"``, ``"xywh"`` or ``"cxcywh"`` | |
ValueError: | |
If ``iou_type`` is not one of ``"bbox"`` or ``"segm"`` | |
ValueError: | |
If ``iou_thresholds`` is not None or a list of floats | |
ValueError: | |
If ``rec_thresholds`` is not None or a list of floats | |
ValueError: | |
If ``max_detection_thresholds`` is not None or a list of ints | |
ValueError: | |
If ``area_ranges`` is not None or a list of lists of length 2 | |
ValueError: | |
If ``area_ranges_labels`` is not None or a list of strings | |
Example: | |
>>> import numpy as np | |
>>> from metrics.detection import MeanAveragePrecision | |
>>> preds = [ | |
... dict( | |
... boxes=np.array([[258.0, 41.0, 606.0, 285.0]]), | |
... scores=np.array([0.536]), | |
... labels=np.array([0]), | |
... ) | |
... ] | |
>>> target = [ | |
... dict( | |
... boxes=np.array([[214.0, 41.0, 562.0, 285.0]]), | |
... labels=np.array([0]), | |
... ) | |
... ] | |
>>> metric = PrecisionRecallF1Support() | |
>>> metric.update(preds, target) | |
>>> print(metric.compute()) | |
{'params': <metrics.detection.cocoeval.Params at 0x16dc99150>, | |
'eval': ... output of COCOeval.accumuate(), | |
'metrics': {'all': {'range': [0, 10000000000.0], | |
'iouThr': '0.50', | |
'maxDets': 100, | |
'tp': 1, | |
'fp': 0, | |
'fn': 0, | |
'precision': 1.0, | |
'recall': 1.0, | |
'f1': 1.0, | |
'support': 1}}} | |
""" | |
is_differentiable: bool = False | |
higher_is_better: Optional[bool] = True | |
full_state_update: bool = True | |
plot_lower_bound: float = 0.0 | |
plot_upper_bound: float = 1.0 | |
detections: List[np.ndarray] | |
detection_scores: List[np.ndarray] | |
detection_labels: List[np.ndarray] | |
groundtruths: List[np.ndarray] | |
groundtruth_labels: List[np.ndarray] | |
groundtruth_crowds: List[np.ndarray] | |
groundtruth_area: List[np.ndarray] | |
def __init__( | |
self, | |
box_format: str = "xyxy", | |
iou_type: Literal["bbox", "segm"] = "bbox", | |
iou_thresholds: Optional[List[float]] = None, | |
rec_thresholds: Optional[List[float]] = None, | |
max_detection_thresholds: Optional[List[int]] = None, | |
area_ranges: Optional[List[List[int]]] = None, | |
area_ranges_labels: Optional[List[str]] = None, | |
class_agnostic: bool = True, | |
debug: bool = False, | |
**kwargs: Any, | |
) -> None: | |
allowed_box_formats = ("xyxy", "xywh", "cxcywh") | |
if box_format not in allowed_box_formats: | |
raise ValueError( | |
f"Expected argument `box_format` to be one of {allowed_box_formats} but got {box_format}") | |
self.box_format = box_format | |
allowed_iou_types = ("segm", "bbox") | |
if iou_type not in allowed_iou_types: | |
raise ValueError( | |
f"Expected argument `iou_type` to be one of {allowed_iou_types} but got {iou_type}") | |
self.iou_type = iou_type | |
if iou_thresholds is not None and not isinstance(iou_thresholds, list): | |
raise ValueError( | |
f"Expected argument `iou_thresholds` to either be `None` or a list of floats but got {iou_thresholds}" | |
) | |
self.iou_thresholds = iou_thresholds or np.linspace( | |
0.5, 0.95, round((0.95 - 0.5) / 0.05) + 1).tolist() | |
if rec_thresholds is not None and not isinstance(rec_thresholds, list): | |
raise ValueError( | |
f"Expected argument `rec_thresholds` to either be `None` or a list of floats but got {rec_thresholds}" | |
) | |
self.rec_thresholds = rec_thresholds or np.linspace( | |
0.0, 1.00, round(1.00 / 0.01) + 1).tolist() | |
if max_detection_thresholds is not None and not isinstance(max_detection_thresholds, list): | |
raise ValueError( | |
f"Expected argument `max_detection_thresholds` to either be `None` or a list of ints" | |
f" but got {max_detection_thresholds}" | |
) | |
max_det_thr = np.sort(np.array( | |
max_detection_thresholds or [100], dtype=np.uint)) | |
self.max_detection_thresholds = max_det_thr.tolist() | |
# check area ranges | |
if area_ranges is not None: | |
if not isinstance(area_ranges, list): | |
raise ValueError( | |
f"Expected argument `area_ranges` to either be `None` or a list of lists but got {area_ranges}" | |
) | |
for area_range in area_ranges: | |
if not isinstance(area_range, list) or len(area_range) != 2: | |
raise ValueError( | |
f"Expected argument `area_ranges` to be a list of lists of length 2 but got {area_ranges}" | |
) | |
self.area_ranges = area_ranges if area_ranges is not None else [ | |
[0**2, 1e5**2]] | |
if area_ranges_labels is not None: | |
if area_ranges is None: | |
raise ValueError( | |
"Expected argument `area_ranges_labels` to be `None` if `area_ranges` is not provided" | |
) | |
if not isinstance(area_ranges_labels, list): | |
raise ValueError( | |
f"Expected argument `area_ranges_labels` to either be `None` or a list of strings" | |
f" but got {area_ranges_labels}" | |
) | |
if len(area_ranges_labels) != len(area_ranges): | |
raise ValueError( | |
f"Expected argument `area_ranges_labels` to be a list of length {len(area_ranges)}" | |
f" but got {area_ranges_labels}" | |
) | |
self.area_ranges_labels = area_ranges_labels if area_ranges_labels is not None else [ | |
"all"] | |
# if not isinstance(class_metrics, bool): | |
# raise ValueError( | |
# "Expected argument `class_metrics` to be a boolean") | |
# self.class_metrics = class_metrics | |
if not isinstance(class_agnostic, bool): | |
raise ValueError( | |
"Expected argument `class_agnostic` to be a boolean") | |
self.class_agnostic = class_agnostic | |
if not isinstance(debug, bool): | |
raise ValueError("Expected argument `debug` to be a boolean") | |
self.debug = debug | |
self.detections = [] | |
self.detection_scores = [] | |
self.detection_labels = [] | |
self.groundtruths = [] | |
self.groundtruth_labels = [] | |
self.groundtruth_crowds = [] | |
self.groundtruth_area = [] | |
# self.add_state("detections", default=[], dist_reduce_fx=None) | |
# self.add_state("detection_scores", default=[], dist_reduce_fx=None) | |
# self.add_state("detection_labels", default=[], dist_reduce_fx=None) | |
# self.add_state("groundtruths", default=[], dist_reduce_fx=None) | |
# self.add_state("groundtruth_labels", default=[], dist_reduce_fx=None) | |
# self.add_state("groundtruth_crowds", default=[], dist_reduce_fx=None) | |
# self.add_state("groundtruth_area", default=[], dist_reduce_fx=None) | |
def update(self, preds: List[Dict[str, np.ndarray]], target: List[Dict[str, np.ndarray]]) -> None: | |
"""Update metric state. | |
Raises: | |
ValueError: | |
If ``preds`` is not of type (:class:`~List[Dict[str, np.ndarray]]`) | |
ValueError: | |
If ``target`` is not of type ``List[Dict[str, np.ndarray]]`` | |
ValueError: | |
If ``preds`` and ``target`` are not of the same length | |
ValueError: | |
If any of ``preds.boxes``, ``preds.scores`` and ``preds.labels`` are not of the same length | |
ValueError: | |
If any of ``target.boxes`` and ``target.labels`` are not of the same length | |
ValueError: | |
If any box is not type float and of length 4 | |
ValueError: | |
If any class is not type int and of length 1 | |
ValueError: | |
If any score is not type float and of length 1 | |
""" | |
_input_validator(preds, target, iou_type=self.iou_type) | |
for item in preds: | |
detections = self._get_safe_item_values(item) | |
self.detections.append(detections) | |
self.detection_labels.append(item["labels"]) | |
self.detection_scores.append(item["scores"]) | |
for item in target: | |
groundtruths = self._get_safe_item_values(item) | |
self.groundtruths.append(groundtruths) | |
self.groundtruth_labels.append(item["labels"]) | |
self.groundtruth_crowds.append( | |
item.get("iscrowd", np.zeros_like(item["labels"]))) | |
self.groundtruth_area.append( | |
item.get("area", np.zeros_like(item["labels"]))) | |
def compute(self) -> dict: | |
"""Computes the metric.""" | |
coco_target, coco_preds = COCO(), COCO() | |
coco_target.dataset = self._get_coco_format( | |
self.groundtruths, self.groundtruth_labels, crowds=self.groundtruth_crowds, area=self.groundtruth_area | |
) | |
coco_preds.dataset = self._get_coco_format( | |
self.detections, self.detection_labels, scores=self.detection_scores) | |
with contextlib.redirect_stdout(io.StringIO()) as f: | |
coco_target.createIndex() | |
coco_preds.createIndex() | |
coco_eval = COCOeval(coco_target, coco_preds, | |
iouType=self.iou_type) | |
coco_eval.params.iouThrs = np.array( | |
self.iou_thresholds, dtype=np.float64) | |
coco_eval.params.recThrs = np.array( | |
self.rec_thresholds, dtype=np.float64) | |
coco_eval.params.maxDets = self.max_detection_thresholds | |
coco_eval.params.areaRng = self.area_ranges | |
coco_eval.params.areaRngLbl = self.area_ranges_labels | |
coco_eval.params.useCats = 0 if self.class_agnostic else 1 | |
coco_eval.evaluate() | |
coco_eval.accumulate() | |
if self.debug: | |
print(f.getvalue()) | |
metrics = coco_eval.summarize() | |
return metrics | |
def coco_to_np( | |
coco_preds: str, | |
coco_target: str, | |
iou_type: Literal["bbox", "segm"] = "bbox", | |
) -> Tuple[List[Dict[str, np.ndarray]], List[Dict[str, np.ndarray]]]: | |
"""Utility function for converting .json coco format files to the input format of this metric. | |
The function accepts a file for the predictions and a file for the target in coco format and converts them to | |
a list of dictionaries containing the boxes, labels and scores in the input format of this metric. | |
Args: | |
coco_preds: Path to the json file containing the predictions in coco format | |
coco_target: Path to the json file containing the targets in coco format | |
iou_type: Type of input, either `bbox` for bounding boxes or `segm` for segmentation masks | |
Returns: | |
preds: List of dictionaries containing the predictions in the input format of this metric | |
target: List of dictionaries containing the targets in the input format of this metric | |
Example: | |
>>> # File formats are defined at https://cocodataset.org/#format-data | |
>>> # Example files can be found at | |
>>> # https://github.com/cocodataset/cocoapi/tree/master/results | |
>>> from torchmetrics.detection import MeanAveragePrecision | |
>>> preds, target = MeanAveragePrecision.coco_to_tm( | |
... "instances_val2014_fakebbox100_results.json.json", | |
... "val2014_fake_eval_res.txt.json" | |
... iou_type="bbox" | |
... ) # doctest: +SKIP | |
""" | |
with contextlib.redirect_stdout(io.StringIO()): | |
gt = COCO(coco_target) | |
dt = gt.loadRes(coco_preds) | |
gt_dataset = gt.dataset["annotations"] | |
dt_dataset = dt.dataset["annotations"] | |
target = {} | |
for t in gt_dataset: | |
if t["image_id"] not in target: | |
target[t["image_id"]] = { | |
"boxes" if iou_type == "bbox" else "masks": [], | |
"labels": [], | |
"iscrowd": [], | |
"area": [], | |
} | |
if iou_type == "bbox": | |
target[t["image_id"]]["boxes"].append(t["bbox"]) | |
else: | |
target[t["image_id"]]["masks"].append(gt.annToMask(t)) | |
target[t["image_id"]]["labels"].append(t["category_id"]) | |
target[t["image_id"]]["iscrowd"].append(t["iscrowd"]) | |
target[t["image_id"]]["area"].append(t["area"]) | |
preds = {} | |
for p in dt_dataset: | |
if p["image_id"] not in preds: | |
preds[p["image_id"]] = { | |
"boxes" if iou_type == "bbox" else "masks": [], "scores": [], "labels": []} | |
if iou_type == "bbox": | |
preds[p["image_id"]]["boxes"].append(p["bbox"]) | |
else: | |
preds[p["image_id"]]["masks"].append(gt.annToMask(p)) | |
preds[p["image_id"]]["scores"].append(p["score"]) | |
preds[p["image_id"]]["labels"].append(p["category_id"]) | |
for k in target: # add empty predictions for images without predictions | |
if k not in preds: | |
preds[k] = {"boxes" if iou_type == | |
"bbox" else "masks": [], "scores": [], "labels": []} | |
batched_preds, batched_target = [], [] | |
for key in target: | |
name = "boxes" if iou_type == "bbox" else "masks" | |
batched_preds.append( | |
{ | |
name: np.array( | |
np.array(preds[key]["boxes"]), dtype=np.float32) | |
if iou_type == "bbox" | |
else np.array(np.array(preds[key]["masks"]), dtype=np.uint8), | |
"scores": np.array(preds[key]["scores"], dtype=np.float32), | |
"labels": np.array(preds[key]["labels"], dtype=np.int32), | |
} | |
) | |
batched_target.append( | |
{ | |
name: np.array( | |
target[key]["boxes"], dtype=np.float32) | |
if iou_type == "bbox" | |
else np.array(np.array(target[key]["masks"]), dtype=np.uint8), | |
"labels": np.array(target[key]["labels"], dtype=np.int32), | |
"iscrowd": np.array(target[key]["iscrowd"], dtype=np.int32), | |
"area": np.array(target[key]["area"], dtype=np.float32), | |
} | |
) | |
return batched_preds, batched_target | |
def np_to_coco(self, name: str = "np_map_input") -> None: | |
"""Utility function for converting the input for this metric to coco format and saving it to a json file. | |
This function should be used after calling `.update(...)` or `.forward(...)` on all data that should be written | |
to the file, as the input is then internally cached. The function then converts to information to coco format | |
a writes it to json files. | |
Args: | |
name: Name of the output file, which will be appended with "_preds.json" and "_target.json" | |
Example: | |
>>> import numpy as np | |
>>> from metrics.detection import MeanAveragePrecision | |
>>> preds = [ | |
... dict( | |
... boxes=np.array([[258.0, 41.0, 606.0, 285.0]]), | |
... scores=np.array([0.536]), | |
... labels=np.array([0]), | |
... ) | |
... ] | |
>>> target = [ | |
... dict( | |
... boxes=np.array([[214.0, 41.0, 562.0, 285.0]]), | |
... labels=np.array([0]), | |
... ) | |
... ] | |
>>> metric = PrecisionRecallF1Support() | |
>>> metric.update(preds, target) | |
>>> metric.np_to_coco("np_map_input") # doctest: +SKIP | |
""" | |
target_dataset = self._get_coco_format( | |
self.groundtruths, self.groundtruth_labels) | |
preds_dataset = self._get_coco_format( | |
self.detections, self.detection_labels, self.detection_scores) | |
preds_json = json.dumps(preds_dataset["annotations"], indent=4) | |
target_json = json.dumps(target_dataset, indent=4) | |
with open(f"{name}_preds.json", "w") as f: | |
f.write(preds_json) | |
with open(f"{name}_target.json", "w") as f: | |
f.write(target_json) | |
def _get_safe_item_values(self, item: Dict[str, Any]) -> Union[np.ndarray, Tuple]: | |
"""Convert and return the boxes or masks from the item depending on the iou_type. | |
Args: | |
item: input dictionary containing the boxes or masks | |
Returns: | |
boxes or masks depending on the iou_type | |
""" | |
if self.iou_type == "bbox": | |
boxes = _fix_empty_arrays(item["boxes"]) | |
if boxes.size > 0: | |
boxes = box_convert( | |
boxes, in_fmt=self.box_format, out_fmt="xywh") | |
return boxes | |
if self.iou_type == "segm": | |
masks = [] | |
for i in item["masks"]: | |
rle = mask_utils.encode(np.asfortranarray(i)) | |
masks.append((tuple(rle["size"]), rle["counts"])) | |
return tuple(masks) | |
raise Exception(f"IOU type {self.iou_type} is not supported") | |
def _get_classes(self) -> List: | |
"""Return a list of unique classes found in ground truth and detection data.""" | |
all_labels = np.concatenate( | |
self.detection_labels + self.groundtruth_labels) | |
unique_classes = np.unique(all_labels) | |
return unique_classes.tolist() | |
def _get_coco_format( | |
self, | |
boxes: List[np.ndarray], | |
labels: List[np.ndarray], | |
scores: Optional[List[np.ndarray]] = None, | |
crowds: Optional[List[np.ndarray]] = None, | |
area: Optional[List[np.ndarray]] = None, | |
) -> Dict: | |
"""Transforms and returns all cached targets or predictions in COCO format. | |
Format is defined at https://cocodataset.org/#format-data | |
""" | |
images = [] | |
annotations = [] | |
annotation_id = 1 # has to start with 1, otherwise COCOEval results are wrong | |
for image_id, (image_boxes, image_labels) in enumerate(zip(boxes, labels)): | |
if self.iou_type == "segm" and len(image_boxes) == 0: | |
continue | |
if self.iou_type == "bbox": | |
image_boxes = image_boxes.tolist() | |
image_labels = image_labels.tolist() | |
images.append({"id": image_id}) | |
if self.iou_type == "segm": | |
images[-1]["height"], images[-1]["width"] = image_boxes[0][0][0], image_boxes[0][0][1] | |
for k, (image_box, image_label) in enumerate(zip(image_boxes, image_labels)): | |
if self.iou_type == "bbox" and len(image_box) != 4: | |
raise ValueError( | |
f"Invalid input box of sample {image_id}, element {k} (expected 4 values, got {len(image_box)})" | |
) | |
if not isinstance(image_label, int): | |
raise ValueError( | |
f"Invalid input class of sample {image_id}, element {k}" | |
f" (expected value of type integer, got type {type(image_label)})" | |
) | |
stat = image_box if self.iou_type == "bbox" else { | |
"size": image_box[0], "counts": image_box[1]} | |
if area is not None and area[image_id][k].tolist() > 0: | |
area_stat = area[image_id][k].tolist() | |
else: | |
area_stat = image_box[2] * \ | |
image_box[3] if self.iou_type == "bbox" else mask_utils.area( | |
stat) | |
annotation = { | |
"id": annotation_id, | |
"image_id": image_id, | |
"bbox" if self.iou_type == "bbox" else "segmentation": stat, | |
"area": area_stat, | |
"category_id": image_label, | |
"iscrowd": crowds[image_id][k].tolist() if crowds is not None else 0, | |
} | |
if scores is not None: | |
score = scores[image_id][k].tolist() | |
if not isinstance(score, float): | |
raise ValueError( | |
f"Invalid input score of sample {image_id}, element {k}" | |
f" (expected value of type float, got type {type(score)})" | |
) | |
annotation["score"] = score | |
annotations.append(annotation) | |
annotation_id += 1 | |
classes = [{"id": i, "name": str(i)} for i in self._get_classes()] | |
return {"images": images, "annotations": annotations, "categories": classes} | |