Spaces:
Sleeping
Sleeping
File size: 3,660 Bytes
869f4d7 e921d65 955daea a378000 246a775 a378000 955daea e921d65 8e60091 e921d65 8e60091 955daea e921d65 8e60091 e921d65 869f4d7 e921d65 a378000 4725ead 955daea 246a775 a378000 246a775 955daea e921d65 869f4d7 e921d65 a378000 e921d65 a378000 e921d65 955daea a378000 e921d65 869f4d7 e921d65 955daea e921d65 a378000 869f4d7 955daea e921d65 a378000 869f4d7 246a775 869f4d7 e921d65 a378000 246a775 a378000 955daea a378000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import glob
import gradio as gr
from huggingface_hub import get_token
from utils import (
load_model,
load_image_from_url,
inference,
load_badges,
FlaggedCounter,
)
from flagging import myHuggingFaceDatasetSaver
TITLE = """
<h1> RGB Detection Demo </h1>
<p align="center">
Give it a try! Upload an image or enter a URL to an image and click
<code>Submit</code>.
</p>
"""
NOTICE = """
See something off? Your feedback makes a difference! Let us know by
flagging any outcomes that don't seem right. Just click on `Flag`
to submit the image for review. Note that by clicking `Flag`, you
agree to the use of your image for A.I. improvement purposes.
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
model = load_model("SEA-AI/yolov5n6-RGB", img_size=1280)
model.conf = 0.2
model.iou = 0.4
model.max_det = 100
model.agnostic = True # NMS class-agnostic
# Flagging
dataset_name = "SEA-AI/crowdsourced-sea-images"
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)
flagged_counter = FlaggedCounter(dataset_name)
theme = gr.themes.Default(primary_hue=gr.themes.colors.indigo)
with gr.Blocks(theme=theme, css=css) as demo:
badges = gr.HTML(load_badges(flagged_counter.count()))
title = gr.HTML(TITLE)
with gr.Row():
with gr.Column():
img_input = gr.Image(label="input", interactive=True)
img_url = gr.Textbox(
lines=1,
placeholder="or enter URL to image here",
label="input_url",
show_label=False,
)
with gr.Row():
clear = gr.ClearButton()
submit = gr.Button("Submit", variant="primary")
with gr.Column():
img_output = gr.Image(
label="output", interactive=False, show_share_button=True
)
flag = gr.Button("Flag", visible=False)
notice = gr.Markdown(value=NOTICE, visible=False)
gr.Examples(
examples=glob.glob("examples/*.jpg"),
inputs=img_input,
outputs=img_output,
fn=lambda image: inference(model, image),
cache_examples=True,
)
# add components to clear when clear button is clicked
clear.add([img_input, img_url, img_output])
# event listeners
img_url.change(load_image_from_url, [img_url], img_input)
submit.click(
lambda image: inference(model, image),
[img_input],
img_output,
api_name="inference",
)
# event listeners with decorators
@img_output.change(inputs=[img_output], outputs=[flag, notice], show_api=False)
def show_hide(_img_ouput):
visible = _img_ouput is not None
return {
flag: gr.Button("Flag", visible=visible, interactive=True),
notice: gr.Markdown(value=NOTICE, visible=visible),
}
# This needs to be called prior to the first call to callback.flag()
hf_writer.setup([img_input], "flagged")
# Sequential logic when flag button is clicked
flag.click(lambda: gr.Info("Thank you for contributing!"), show_api=False).then(
lambda: {flag: gr.Button("Flag", interactive=False)}, [], [flag], show_api=False
).then(
lambda *args: hf_writer.flag(args),
[img_input, flag],
[],
preprocess=False,
show_api=False,
).then(
lambda: load_badges(flagged_counter.count()), [], badges, show_api=False
)
# called during initial load in browser
demo.load(lambda: load_badges(flagged_counter.count()), [], badges, show_api=False)
if __name__ == "__main__":
demo.queue().launch() # show_api=False)
|