File size: 3,660 Bytes
869f4d7
e921d65
955daea
a378000
 
 
 
 
246a775
a378000
955daea
e921d65
 
8e60091
 
 
 
 
 
e921d65
 
 
8e60091
 
955daea
 
e921d65
 
8e60091
 
 
 
 
 
e921d65
 
869f4d7
e921d65
 
 
 
a378000
4725ead
955daea
246a775
a378000
 
 
 
246a775
955daea
e921d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
869f4d7
e921d65
 
 
 
 
 
a378000
e921d65
 
 
 
a378000
 
 
 
 
 
e921d65
955daea
a378000
 
 
e921d65
869f4d7
e921d65
 
 
 
955daea
e921d65
a378000
 
 
869f4d7
955daea
 
 
e921d65
a378000
869f4d7
246a775
869f4d7
e921d65
a378000
246a775
a378000
955daea
a378000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import glob
import gradio as gr
from huggingface_hub import get_token
from utils import (
    load_model,
    load_image_from_url,
    inference,
    load_badges,
    FlaggedCounter,
)
from flagging import myHuggingFaceDatasetSaver


TITLE = """
<h1> RGB Detection Demo </h1>
<p align="center">
Give it a try! Upload an image or enter a URL to an image and click
<code>Submit</code>.
</p>
"""

NOTICE = """
See something off? Your feedback makes a difference! Let us know by
flagging any outcomes that don't seem right. Just click on `Flag`
to submit the image for review. Note that by clicking `Flag`, you
agree to the use of your image for A.I. improvement purposes.
"""

css = """
h1 {
    text-align: center;
    display: block;
}
"""

model = load_model("SEA-AI/yolov5n6-RGB", img_size=1280)
model.conf = 0.2
model.iou = 0.4
model.max_det = 100
model.agnostic = True  # NMS class-agnostic

# Flagging
dataset_name = "SEA-AI/crowdsourced-sea-images"
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)
flagged_counter = FlaggedCounter(dataset_name)


theme = gr.themes.Default(primary_hue=gr.themes.colors.indigo)
with gr.Blocks(theme=theme, css=css) as demo:
    badges = gr.HTML(load_badges(flagged_counter.count()))
    title = gr.HTML(TITLE)

    with gr.Row():
        with gr.Column():
            img_input = gr.Image(label="input", interactive=True)
            img_url = gr.Textbox(
                lines=1,
                placeholder="or enter URL to image here",
                label="input_url",
                show_label=False,
            )
            with gr.Row():
                clear = gr.ClearButton()
                submit = gr.Button("Submit", variant="primary")
        with gr.Column():
            img_output = gr.Image(
                label="output", interactive=False, show_share_button=True
            )
            flag = gr.Button("Flag", visible=False)
            notice = gr.Markdown(value=NOTICE, visible=False)

    gr.Examples(
        examples=glob.glob("examples/*.jpg"),
        inputs=img_input,
        outputs=img_output,
        fn=lambda image: inference(model, image),
        cache_examples=True,
    )

    # add components to clear when clear button is clicked
    clear.add([img_input, img_url, img_output])

    # event listeners
    img_url.change(load_image_from_url, [img_url], img_input)
    submit.click(
        lambda image: inference(model, image),
        [img_input],
        img_output,
        api_name="inference",
    )

    # event listeners with decorators
    @img_output.change(inputs=[img_output], outputs=[flag, notice], show_api=False)
    def show_hide(_img_ouput):
        visible = _img_ouput is not None
        return {
            flag: gr.Button("Flag", visible=visible, interactive=True),
            notice: gr.Markdown(value=NOTICE, visible=visible),
        }

    # This needs to be called prior to the first call to callback.flag()
    hf_writer.setup([img_input], "flagged")

    # Sequential logic when flag button is clicked
    flag.click(lambda: gr.Info("Thank you for contributing!"), show_api=False).then(
        lambda: {flag: gr.Button("Flag", interactive=False)}, [], [flag], show_api=False
    ).then(
        lambda *args: hf_writer.flag(args),
        [img_input, flag],
        [],
        preprocess=False,
        show_api=False,
    ).then(
        lambda: load_badges(flagged_counter.count()), [], badges, show_api=False
    )

    # called during initial load in browser
    demo.load(lambda: load_badges(flagged_counter.count()), [], badges, show_api=False)

if __name__ == "__main__":
    demo.queue().launch()  # show_api=False)