Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import get_token | |
from utils import load_model, load_image_from_url, inference, load_badges | |
from flagging import myHuggingFaceDatasetSaver | |
TITLE = """ | |
<h1> RGB Detection Demo </h1> | |
<p align="center"> | |
Give it a try! Upload an image or enter a URL to an image and click | |
<code>Submit</code>. | |
</p> | |
""" | |
NOTICE = """ | |
See something off? Your feedback makes a difference! Let us know by | |
flagging any outcomes that don't seem right. Just click on `Flag` | |
to submit the image for review. Note that by clicking `Flag`, you | |
agree to the use of your image for A.I. improvement purposes. | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
model = load_model("SEA-AI/yolov5n6-RGB", img_size=1280) | |
model.conf = 0.25 | |
model.iou = 0.4 | |
model.max_det = 100 | |
model.agnostic = True # NMS class-agnostic | |
# This callback will be used to flag images | |
dataset_name = "SEA-AI/crowdsourced-sea-images" | |
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name) | |
with gr.Blocks(css=css) as demo: | |
badges = gr.HTML(load_badges(dataset_name, trials=1)) | |
title = gr.HTML(TITLE) | |
with gr.Row(): | |
with gr.Column(): | |
img_input = gr.Image(label="input", interactive=True) | |
img_url = gr.Textbox( | |
lines=1, | |
placeholder="or enter URL to image here", | |
label="input_url", | |
show_label=False, | |
) | |
with gr.Row(): | |
clear = gr.ClearButton() | |
submit = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
img_output = gr.Image( | |
label="output", interactive=False, show_share_button=True | |
) | |
flag = gr.Button("Flag", visible=False) | |
notice = gr.Markdown(value=NOTICE, visible=False) | |
gr.Examples( | |
examples=[ | |
"https://images.pexels.com/photos/273886/pexels-photo-273886.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2", | |
"https://images.pexels.com/photos/913111/pexels-photo-913111.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2", | |
"https://images.pexels.com/photos/88517/pexels-photo-88517.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2", | |
], | |
inputs=img_input, | |
outputs=img_output, | |
fn=lambda image: inference(model, image), | |
cache_examples=True, | |
) | |
# add components to clear | |
clear.add([img_input, img_url, img_output]) | |
# event listeners | |
img_url.change(load_image_from_url, [img_url], img_input) | |
submit.click(lambda image: inference(model, image), [img_input], img_output) | |
# event listeners with decorators | |
def show_hide(img_output): | |
visible = img_output is not None | |
return { | |
flag: gr.Button("Flag", visible=visible), | |
notice: gr.Markdown(value=NOTICE, visible=visible), | |
} | |
# This needs to be called prior to the first call to callback.flag() | |
hf_writer.setup([img_input], "flagged") | |
img_input.flag | |
# We can choose which components to flag (in this case, we'll flag all) | |
flag.click(lambda: gr.Info("Thank you for contributing!")).then( | |
lambda *args: hf_writer.flag(args), | |
[img_input, flag], | |
[], | |
preprocess=False, | |
).then(lambda: load_badges(dataset_name), [], badges) | |
if __name__ == "__main__": | |
demo.queue().launch() | |