Spaces:
Running
Running
import glob | |
import gradio as gr | |
from huggingface_hub import get_token | |
from utils import ( | |
load_model, | |
load_image_from_url, | |
inference, | |
load_badges, | |
count_flagged_images_from_csv, | |
) | |
from flagging import myHuggingFaceDatasetSaver | |
TITLE = """ | |
<h1> RGB Detection Demo </h1> | |
<p align="center"> | |
Give it a try! Upload an image or enter a URL to an image and click | |
<code>Submit</code>. | |
</p> | |
""" | |
NOTICE = """ | |
See something off? Your feedback makes a difference! Let us know by | |
flagging any outcomes that don't seem right. Just click on `Flag` | |
to submit the image for review. Note that by clicking `Flag`, you | |
agree to the use of your image for A.I. improvement purposes. | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
model = load_model("SEA-AI/yolov5n6-RGB", img_size=1280) | |
model.conf = 0.2 | |
model.iou = 0.4 | |
model.max_det = 100 | |
model.agnostic = True # NMS class-agnostic | |
# Flagging | |
dataset_name = "SEA-AI/crowdsourced-sea-images" | |
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name) | |
def get_flagged_count(): | |
"""Count flagged images in dataset.""" | |
return count_flagged_images_from_csv(dataset_name) | |
theme = gr.themes.Default(primary_hue=gr.themes.colors.indigo) | |
with gr.Blocks(theme=theme, css=css) as demo: | |
badges = gr.HTML(load_badges(get_flagged_count())) | |
title = gr.HTML(TITLE) | |
with gr.Row(): | |
with gr.Column(): | |
img_input = gr.Image(label="input", interactive=True) | |
img_url = gr.Textbox( | |
lines=1, | |
placeholder="or enter URL to image here", | |
label="input_url", | |
show_label=False, | |
) | |
with gr.Row(): | |
clear = gr.ClearButton() | |
submit = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
img_output = gr.Image( | |
label="output", interactive=False, show_share_button=True | |
) | |
flag = gr.Button("Flag", visible=False) | |
notice = gr.Markdown(value=NOTICE, visible=False) | |
gr.Examples( | |
examples=glob.glob("examples/*.jpg"), | |
inputs=img_input, | |
outputs=img_output, | |
fn=lambda image: inference(model, image), | |
cache_examples=True, | |
) | |
# add components to clear when clear button is clicked | |
clear.add([img_input, img_url, img_output]) | |
# event listeners | |
img_url.change(load_image_from_url, [img_url], img_input) | |
submit.click( | |
lambda image: inference(model, image), | |
[img_input], | |
img_output, | |
api_name="inference", | |
) | |
# event listeners with decorators | |
def show_hide(_img_ouput): | |
visible = _img_ouput is not None | |
return { | |
flag: gr.Button("Flag", visible=visible, interactive=True), | |
notice: gr.Markdown(value=NOTICE, visible=visible), | |
} | |
# This needs to be called prior to the first call to callback.flag() | |
hf_writer.setup([img_input], "flagged") | |
# Sequential logic when flag button is clicked | |
flag.click(lambda: gr.Info("Thank you for contributing!"), show_api=False).then( | |
lambda: {flag: gr.Button("Flag", interactive=False)}, [], [flag], show_api=False | |
).then( | |
lambda *args: hf_writer.flag(args), | |
[img_input, flag], | |
[], | |
preprocess=False, | |
show_api=False, | |
).then( | |
lambda: load_badges(get_flagged_count()), [], badges, show_api=False | |
) | |
# called during initial load in browser | |
demo.load(lambda: load_badges(get_flagged_count()), [], badges, show_api=False) | |
if __name__ == "__main__": | |
demo.queue().launch() # show_api=False) | |