File size: 7,680 Bytes
40c6d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e748f
40c6d5b
 
63e748f
c997355
40c6d5b
 
 
ba20988
40c6d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76eeea1
40c6d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
a98be6c
63e748f
ff19c2d
 
 
 
 
 
 
a98be6c
 
 
 
63e748f
 
 
 
 
f7c3a58
 
a98be6c
f7c3a58
 
f12b919
f7c3a58
 
 
 
f12b919
f7c3a58
a98be6c
 
 
e318a9c
a98be6c
 
 
 
 
 
f6fb469
63e748f
e318a9c
63e748f
f12b919
f8639a1
 
f12b919
18cf4f9
f8639a1
f12b919
f7c3a58
 
a98be6c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import evaluate
import datasets
import motmetrics as mm
import numpy as np

_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
  title={MOT16: A benchmark for multi-object tracking},
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
  journal={arXiv preprint arXiv:1603.00831},
  year={2016}
}
"""

_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT) 
algorithms by computing various metrics based on predicted and ground truth bounding 
boxes. It serves as a crucial tool in assessing the performance of MOT systems, 
aiding in the iterative improvement of tracking algorithms."""


_KWARGS_DESCRIPTION = """

Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    max_iou (`float`, *optional*):
        If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
        Default is 0.5.
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MotMetrics(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                "predictions": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            ),
                "references": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            )
            }),
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(self, payload, max_iou: float = 0.5, debug: bool = False):
        """Returns the scores"""
        # TODO: Compute the different scores of the module
        return calculate_from_payload(payload, max_iou, debug)
        #return calculate(predictions, references, max_iou)

def calculate(predictions, references, max_iou: float = 0.5):
    """Returns the scores"""
    
    try: 
        np_predictions = np.array(predictions)
    except:
        raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
    
    try:
        np_references = np.array(references)
    except:
        raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
    
    if np_predictions.shape[1] != 7:
        raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
    if np_references.shape[1] != 6:
        raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")

    if np_predictions[:, 0].min() <= 0:
        raise ValueError("The frame number in the predictions should be a positive integer")
    if np_references[:, 0].min() <= 0:
        raise ValueError("The frame number in the references should be a positive integer")


    num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max()))

    acc = mm.MOTAccumulator(auto_id=True)
    for i in range(1, num_frames+1):
        preds = np_predictions[np_predictions[:, 0] == i, 1:6]
        refs = np_references[np_references[:, 0] == i, 1:6]
        C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou)
        acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)

    mh = mm.metrics.create()
    summary = mh.compute(acc).to_dict()
    for key in summary:
        summary[key] = summary[key][0]
    
    return summary

def calculate_from_payload(payload: dict, max_iou: float = 0.5, debug: bool = False):
    if not isinstance(payload, dict):
        try:
            payload = payload.to_dict()
        except Exception as e:
            raise ValueError(
                "The payload should be a dictionary or a compatible object"
            ) from e
    gt_field_name = payload['gt_field_name']
    models = payload['models']
    sequence_list = payload['sequence_list']

    if debug:
        print("gt_field_name: ", gt_field_name)
        print("models: ", models)
        print("sequence_list: ", sequence_list)

    output = {}

    for sequence in sequence_list:
        output[sequence] = {}
        frames = payload['sequences'][sequence][gt_field_name]
        formated_references = []
        for frame_id, frame in enumerate(frames):
            for detection in frame:
                id = detection['index']
                x, y, w, h = detection['bounding_box']
                formated_references.append([frame_id+1, id, x, y, w, h])  

        for model in models:
            frames = payload['sequences'][sequence][model]
            formated_predictions = []
            
            for frame_id, frame in enumerate(frames):
                for detection in frame:
                    id = detection['index']
                    x, y, w, h = detection['bounding_box']
                    confidence = detection['confidence']
                    confidence = 1  #TODO: remove this line
                    formated_predictions.append([frame_id+1, id, x, y, w, h, confidence])
            if debug:
                print("sequence/model: ", sequence, model)
                print("formated_predictions: ", formated_predictions)
                print("formated_references: ", formated_references)
            if len(formated_predictions) == 0:
                output[sequence][model] = "Model had no predictions."
            elif len(formated_references) == 0:
                output[sequence][model] = "No ground truth."
            else:
                output[sequence][model] = calculate(formated_predictions, formated_references, max_iou=max_iou)
    return output