mot-metrics / README.md
VascoDVRodrigues
pls work
69e13f0
|
raw
history blame
4.08 kB
metadata
title: Mot Metrics
emoji: πŸ“š
colorFrom: gray
colorTo: green
tags:
  - evaluate
  - metric
description: 'TODO: add a description here'
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false

How to Use

The MOT metrics takes two numeric arrays as input corresponding to the predictions and references bounding boxes:

>>> import numpy as np
>>> module = evaluate.load("SEA-AI/mot-metrics")
>>> predicted =[[1,1,10,20,30,40,0.85],[2,1,15,25,35,45,0.78],[2,2,55,65,75,85,0.95]]
>>> ground_truth = [[1, 1, 10, 20, 30, 40],[2, 1, 15, 25, 35, 45]]          
>>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
>>> results
{'idf1': 0.8421052631578947, 'idp': 0.8888888888888888,
'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
'num_unique_objects': 3,'mostly_tracked': 2,
'partially_tracked': 1, 'mostly_lost': 0,
'num_false_positives': 1, 'num_misses': 2,
'num_switches': 0, 'num_fragmentations': 0,
'mota': 0.7, 'motp': 0.02981870229007634,
'num_transfer': 0, 'num_ascend': 0,
'num_migrate': 0}

Input

Each line of the predictions array is a list with the following format:

[frame ID, object ID, x, y, width, height, confidence]

Each line of the references array is a list with the following format:

[frame ID, object ID, x, y, width, height]

The max_iou parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association.

Output

The output is a dictionary containing the following metrics:

Name Description
idf1 ID measures: global min-cost F1 score.
idp ID measures: global min-cost precision.
idr ID measures: global min-cost recall.
recall Number of detections over number of objects.
precision Number of detected objects over sum of detected and false positives.
num_unique_objects Total number of unique object ids encountered.
mostly_tracked Number of objects tracked for at least 80 percent of lifespan.
partially_tracked Number of objects tracked between 20 and 80 percent of lifespan.
mostly_lost Number of objects tracked less than 20 percent of lifespan.
num_false_positives Total number of false positives (false-alarms).
num_misses Total number of misses.
num_switches Total number of track switches.
num_fragmentations Total number of switches from tracked to not tracked.
mota Multiple object tracker accuracy.
motp Multiple object tracker precision.

Citations

@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}}
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}}

Further References