Spaces:
Sleeping
Sleeping
app_file: app.py | |
colorFrom: gray | |
colorTo: green | |
description: 'TODO: add a description here' | |
emoji: "\U0001F4DA" | |
pinned: false | |
runme: | |
id: 01HPS3ASFJXVQR88985QNSXVN1 | |
version: v3 | |
sdk: gradio | |
sdk_version: 3.19.1 | |
tags: | |
- evaluate | |
- metric | |
title: Mot Metrics | |
# How to Use | |
```python {"id":"01HPS3ASFHPCECERTYN7Z4Z7MN"} | |
>>> import evaluate | |
>>> from seametrics.fo_utils.utils import fo_to_payload | |
>>> b = fo_to_payload( | |
>>> dataset="SENTRY_VIDEOS_DATASET_QA", | |
>>> gt_field="ground_truth_det", | |
>>> models=['volcanic-sweep-3_02_2023_N_LN1_ep288_TRACKER'], | |
>>> sequence_list=["Sentry_2022_11_PROACT_CELADON_7.5M_MOB_2022_11_25_12_12_39"], | |
>>> tracking_mode=True | |
>>> ) | |
>>> module = evaluate.load("SEA-AI/mot-metrics") | |
>>> res = module._calculate(b, max_iou=0.99) | |
>>> print(res) | |
{'Sentry_2022_11_PROACT_CELADON_7.5M_MOB_2022_11_25_12_12_39': {'volcanic-sweep-3_02_2023_N_LN1_ep288_TRACKER': {'idf1': 0.9543031226199543, | |
'idp': 0.9804381846635368, | |
'idr': 0.9295252225519288, | |
'recall': 0.9436201780415431, | |
'precision': 0.9953051643192489, | |
'num_unique_objects': 2, | |
'mostly_tracked': 1, | |
'partially_tracked': 0, | |
'mostly_lost': 1, | |
'num_false_positives': 6, | |
'num_misses': 76, | |
'num_switches': 1, | |
'num_fragmentations': 4, | |
'mota': 0.9384272997032641, | |
'motp': 0.5235835810268012, | |
'num_transfer': 0, | |
'num_ascend': 1, | |
'num_migrate': 0}}} | |
``` | |
## Metric Settings | |
The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association. So, the higher the `max_iou` value, the more the predicted bounding boxes are considered for association. | |
## Output | |
The output is a dictionary containing the following metrics: | |
| Name | Description | | |
| :------------------- | :--------------------------------------------------------------------------------- | | |
| idf1 | ID measures: global min-cost F1 score. | | |
| idp | ID measures: global min-cost precision. | | |
| idr | ID measures: global min-cost recall. | | |
| recall | Number of detections over number of objects. | | |
| precision | Number of detected objects over sum of detected and false positives. | | |
| num_unique_objects | Total number of unique object ids encountered. | | |
| mostly_tracked | Number of objects tracked for at least 80 percent of lifespan. | | |
| partially_tracked | Number of objects tracked between 20 and 80 percent of lifespan. | | |
| mostly_lost | Number of objects tracked less than 20 percent of lifespan. | | |
| num_false_positives | Total number of false positives (false-alarms). | | |
| num_misses | Total number of misses. | | |
| num_switches | Total number of track switches. | | |
| num_fragmentations | Total number of switches from tracked to not tracked. | | |
| mota | Multiple object tracker accuracy. | | |
| motp | Multiple object tracker precision. | | |
## Citations | |
```bibtex {"id":"01HPS3ASFJXVQR88985GKHAQRE"} | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020}} | |
``` | |
```bibtex {"id":"01HPS3ASFJXVQR88985KRT478N"} | |
@article{milan2016mot16, | |
title={MOT16: A benchmark for multi-object tracking}, | |
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad}, | |
journal={arXiv preprint arXiv:1603.00831}, | |
year={2016}} | |
``` | |
## Further References | |
- [Github Repository - py-motmetrics](https://github.com/cheind/py-motmetrics/tree/develop) | |