Spaces:
Running
title: panoptic-quality
tags:
- evaluate
- metric
description: PanopticQuality score
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
emoji: πΌοΈ
SEA-AI/PanopticQuality
This hugging face metric uses seametrics.segmentation.PanopticQuality
under the hood to compute a panoptic quality score. It is a wrapper class for the torchmetrics class torchmetrics.detection.PanopticQuality
.
Getting Started
To get started with PanopticQuality, make sure you have the necessary dependencies installed. This metric relies on the evaluate
, seametrics
and seametrics[segmentation]
libraries for metric calculation and integration with FiftyOne datasets.
Basic Usage
>>> import evaluate
>>> from seametrics.payload.processor import PayloadProcessor
>>> MODEL_FIELD = ["maskformer-27k-100ep"]
>>> payload = PayloadProcessor("SAILING_PANOPTIC_DATASET_QA",
>>> gt_field="ground_truth_det",
>>> models=MODEL_FIELD,
>>> sequence_list=["Trip_55_Seq_2", "Trip_197_Seq_1", "Trip_197_Seq_68"],
>>> excluded_classes=[""]).payload
>>> module = evaluate.load("SEA-AI/PanopticQuality")
>>> module.add_payload(payload, model_name=MODEL_FIELD[0])
>>> module.compute()
100%|ββββββββββ| 3/3 [00:03<00:00, 1.30s/it]
Added data ...
Start computing ...
Finished!
{'scores': {'MOTORBOAT': [0.18632257426639526,
0.698709617058436,
0.2666666805744171],
'FAR_AWAY_OBJECT': [0.0, 0.0, 0.0],
'SAILING_BOAT_WITH_CLOSED_SAILS': [0.0, 0.0, 0.0],
'SHIP': [0.3621737026917471, 0.684105846616957, 0.529411792755127],
'WATERCRAFT': [0.0, 0.0, 0.0],
'SPHERICAL_BUOY': [0.0, 0.0, 0.0],
'FLOTSAM': [0.0, 0.0, 0.0],
'SAILING_BOAT_WITH_OPEN_SAILS': [0.0, 0.0, 0.0],
'CONTAINER': [0.0, 0.0, 0.0],
'PILLAR_BUOY': [0.0, 0.0, 0.0],
'AERIAL_ANIMAL': [0.0, 0.0, 0.0],
'HUMAN_IN_WATER': [0.0, 0.0, 0.0],
'WOODEN_LOG': [0.0, 0.0, 0.0],
'MARITIME_ANIMAL': [0.0, 0.0, 0.0],
'WATER': [0.9397601008415222, 0.9397601008415222, 1.0],
'SKY': [0.9674496332804362, 0.9674496332804362, 1.0],
'LAND': [0.30757412078761204, 0.8304501533508301, 0.37037035822868347],
'CONSTRUCTION': [0.0, 0.0, 0.0],
'OWN_BOAT': [0.0, 0.0, 0.0],
'ALL': [0.14543579641409013, 0.21686712374464112, 0.16665520166095935]},
'numbers': {'MOTORBOAT': [6, 15, 18, 4.1922577023506165],
'FAR_AWAY_OBJECT': [0, 8, 9, 0.0],
'SAILING_BOAT_WITH_CLOSED_SAILS': [0, 2, 0, 0.0],
'SHIP': [9, 1, 15, 6.156952619552612],
'WATERCRAFT': [0, 9, 12, 0.0],
'SPHERICAL_BUOY': [0, 4, 22, 0.0],
'FLOTSAM': [0, 0, 1, 0.0],
'SAILING_BOAT_WITH_OPEN_SAILS': [0, 6, 0, 0.0],
'CONTAINER': [0, 0, 0, 0.0],
'PILLAR_BUOY': [0, 0, 9, 0.0],
'AERIAL_ANIMAL': [0, 0, 0, 0.0],
'HUMAN_IN_WATER': [0, 0, 0, 0.0],
'WOODEN_LOG': [0, 0, 0, 0.0],
'MARITIME_ANIMAL': [0, 0, 0, 0.0],
'WATER': [15, 0, 0, 14.096401512622833],
'SKY': [15, 0, 0, 14.511744499206543],
'LAND': [5, 9, 8, 4.15225076675415],
'CONSTRUCTION': [0, 0, 0, 0.0],
'OWN_BOAT': [0, 0, 8, 0.0],
'ALL': [50, 54, 102, 43.109607100486755]}}
Metric Settings
The metric takes four optional input parameters: label2id, stuff, per_class and split_sq_rq.
label2id: Dict[str, int]
: this dictionary is used to map string labels to an integer representation. if not provided a default setting will be used:{'WATER': 0, 'SKY': 1, 'LAND': 2, 'MOTORBOAT': 3, 'FAR_AWAY_OBJECT': 4, 'SAILING_BOAT_WITH_CLOSED_SAILS': 5, 'SHIP': 6, 'WATERCRAFT': 7, 'SPHERICAL_BUOY': 8, 'CONSTRUCTION': 9, 'FLOTSAM': 10, 'SAILING_BOAT_WITH_OPEN_SAILS': 11, 'CONTAINER': 12, 'PILLAR_BUOY': 13, 'AERIAL_ANIMAL': 14, 'HUMAN_IN_WATER': 15, 'OWN_BOAT': 16, 'WOODEN_LOG': 17, 'MARITIME_ANIMAL': 18}
stuff: List[str]
: this list holds all string labels that belong to stuff. if not provided a default setting will be used:["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]
per_class: bool = True
: By default, the results are split up per class. Setting this to False will aggregate the results (average the scores, sum up the numbers; see below for explanation of scoress and numbers)split_sq_rq: bool = True
: By default, the PQ-score is returned in three parts: the PQ score itself, and split into the segmentation quality (SQ) and recognition quality (RQ) part. Setting this to False will return the PQ score only (PQ=RQ*SQ).
Output Values
A dictionary containing the following keys:
- scores: This is a dictionary, that contains a key for each label, if
per_class == True
. Otherwise it only contains the key all. For each key, it contains a list that holds the scores in the following order: PQ, SQ and RQ. Ifsplit_sq_rq == False
, the list consists of PQ only. - numbers: This is a dictionary, that contains a key for each label, if
per_class == True
. Otherwise it only contains the key all. For each key, it contains a list that consists of four elements: TP, FP, FN and IOU:- TP: number of true positive predictions
- FP: number of false positive predictions
- FN: number of false negative predictions
- IOU: sum of IOU of all TP predictions with ground truth With all these values, it is possible to calculate the final scores.
Further References
- seametrics Library: Explore the seametrics GitHub repository for more details on the underlying library.
- Torchmetrics: https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html
- Understanding Metrics: The Panoptic Segmentation task, as well as Panoptic Quality as the evaluation metric, were introduced in this paper.
Contribution
Your contributions are welcome! If you'd like to improve SEA-AI/PanopticQuality or add new features, please feel free to fork the repository, make your changes, and submit a pull request.