File size: 5,811 Bytes
40c6d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
f18fd10
 
adaef8a
 
40c6d5b
adaef8a
 
ac2ff4a
 
adaef8a
 
40c6d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee4926
40c6d5b
 
 
 
 
 
 
 
 
 
 
adaef8a
 
 
 
 
 
 
 
 
 
40c6d5b
 
adaef8a
40c6d5b
 
 
 
 
2d4e41e
40c6d5b
f18fd10
2d4e41e
f18fd10
 
 
 
 
 
 
 
fd36bff
64747fb
fd36bff
 
64747fb
fd36bff
f18fd10
 
 
e6be3be
13fd4f8
 
 
 
f18fd10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d70cd24
f18fd10
d70cd24
f18fd10
d70cd24
f18fd10
d70cd24
f18fd10
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import random
import datetime
import os

import datasets
import evaluate
from seametrics.user_friendly.utils import calculate_from_payload

import wandb

_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
  title={MOT16: A benchmark for multi-object tracking},
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
  journal={arXiv preprint arXiv:1603.00831},
  year={2016}
}
"""

_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT) 
algorithms by computing various metrics based on predicted and ground truth bounding 
boxes. It serves as a crucial tool in assessing the performance of MOT systems, 
aiding in the iterative improvement of tracking algorithms."""


_KWARGS_DESCRIPTION = """

Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    max_iou (`float`, *optional*):
        If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
        Default is 0.5.
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class UserFriendlyMetrics(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(
                        datasets.Sequence(datasets.Value("float"))
                    ),
                    "references": datasets.Sequence(
                        datasets.Sequence(datasets.Value("float"))
                    ),
                }
            ),
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass  

    
    def compute_from_payload(
            self,
            payload,
            max_iou: float = 0.5,
            filters={},
            recognition_thresholds=[0.3, 0.5, 0.8],
            area_ranges_tuples=None,  # Optional parameter
            debug: bool = False,
        ):
            """
            Call the required functions to compute the metrics and return it.
        
            Returns:
                dict: A dictionary containing the computed metrics based on the provided area in the area_ranges_tuples.
            """            
            return self.dummy_values(area_ranges_tuples)
    
    def dummy_values(self, area_ranges_tuples=None):
        """Dummy randome values in the expected format that all new metrics need to return"""

        # Use default ranges if none are provided
        if area_ranges_tuples is None:
            area_ranges_tuples = [
            ("all", [0, 1e5**2]),
            ("small", [0**2, 6**2]),
            ("medium", [6**2, 12**2]),
            ("large", [12**2, 1e5**2]),
        ]
        
        # Generate random dummy values
        def generate_random_values():
            return {
                "tp": random.randint(0, 100),  # Random integer between 0 and 100
                "fp": random.randint(0, 50),   # Random integer between 0 and 50
                "fn": random.randint(0, 50),   # Random integer between 0 and 50
                "precision": round(random.uniform(0.5, 1.0), 2),  # Random float between 0.5 and 1.0
                "recall": round(random.uniform(0.5, 1.0), 2),     # Random float between 0.5 and 1.0
                "f1": round(random.uniform(0.5, 1.0), 2)          # Random float between 0.5 and 1.0
            }
        
        # Initialize output structure
        dummy_output = {
            "model_1": {
                "overall": {},
                "per_sequence": {
                    "sequence_1": {}
                }
            }
        }
        
        # Populate only the ranges specified in area_ranges_tuples with random values
        for range_name, _ in area_ranges_tuples:
            dummy_output["model_1"]["overall"][range_name] = generate_random_values()
            dummy_output["model_1"]["per_sequence"]["sequence_1"][range_name] = generate_random_values()
        
        return dummy_output