Spaces:
Sleeping
Sleeping
File size: 5,811 Bytes
40c6d5b f18fd10 adaef8a 40c6d5b adaef8a ac2ff4a adaef8a 40c6d5b aee4926 40c6d5b adaef8a 40c6d5b adaef8a 40c6d5b 2d4e41e 40c6d5b f18fd10 2d4e41e f18fd10 fd36bff 64747fb fd36bff 64747fb fd36bff f18fd10 e6be3be 13fd4f8 f18fd10 d70cd24 f18fd10 d70cd24 f18fd10 d70cd24 f18fd10 d70cd24 f18fd10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import datetime
import os
import datasets
import evaluate
from seametrics.user_friendly.utils import calculate_from_payload
import wandb
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}
}
"""
_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
algorithms by computing various metrics based on predicted and ground truth bounding
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
aiding in the iterative improvement of tracking algorithms."""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
max_iou (`float`, *optional*):
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
Default is 0.5.
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class UserFriendlyMetrics(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
}
),
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def compute_from_payload(
self,
payload,
max_iou: float = 0.5,
filters={},
recognition_thresholds=[0.3, 0.5, 0.8],
area_ranges_tuples=None, # Optional parameter
debug: bool = False,
):
"""
Call the required functions to compute the metrics and return it.
Returns:
dict: A dictionary containing the computed metrics based on the provided area in the area_ranges_tuples.
"""
return self.dummy_values(area_ranges_tuples)
def dummy_values(self, area_ranges_tuples=None):
"""Dummy randome values in the expected format that all new metrics need to return"""
# Use default ranges if none are provided
if area_ranges_tuples is None:
area_ranges_tuples = [
("all", [0, 1e5**2]),
("small", [0**2, 6**2]),
("medium", [6**2, 12**2]),
("large", [12**2, 1e5**2]),
]
# Generate random dummy values
def generate_random_values():
return {
"tp": random.randint(0, 100), # Random integer between 0 and 100
"fp": random.randint(0, 50), # Random integer between 0 and 50
"fn": random.randint(0, 50), # Random integer between 0 and 50
"precision": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0
"recall": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0
"f1": round(random.uniform(0.5, 1.0), 2) # Random float between 0.5 and 1.0
}
# Initialize output structure
dummy_output = {
"model_1": {
"overall": {},
"per_sequence": {
"sequence_1": {}
}
}
}
# Populate only the ranges specified in area_ranges_tuples with random values
for range_name, _ in area_ranges_tuples:
dummy_output["model_1"]["overall"][range_name] = generate_random_values()
dummy_output["model_1"]["per_sequence"]["sequence_1"][range_name] = generate_random_values()
return dummy_output
|