File size: 5,462 Bytes
58ff7c0
f12b919
bd044ed
58ff7c0
f12b919
4de29b8
f12b919
 
 
 
58ff7c0
0eb3d2a
f12b919
e49a2f4
 
d64615f
58ff7c0
 
8e5798a
71a8d2b
f12b919
e49a2f4
 
 
4de29b8
cccedf3
bde8431
e49a2f4
5facf9a
e49a2f4
4de29b8
 
 
da7328b
4de29b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7328b
4de29b8
 
 
da7328b
4de29b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7328b
 
 
 
8e5798a
 
f2e9ff4
86f14cf
8e5798a
f12b919
 
8e5798a
 
 
 
69e13f0
f12b919
 
8e5798a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
app_file: app.py
colorFrom: yellow
colorTo: green
description: 'TODO: add a description here'
emoji: 🐢
pinned: false
runme:
  id: 01HPS3ASFJXVQR88985QNSXVN1
  version: v3
sdk: gradio
sdk_version: 4.36.0
tags:
- evaluate
- metric
title: ref-metrics
---

# How to Use

```python {"id":"01HPS3ASFHPCECERTYN7Z4Z7MN"}
import evaluate
from seametrics.payload.processor import PayloadProcessor

payload = {}
module = evaluate.load("SEA-AI/ref-metrics")
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
print(res)
```

## Output


```json
"model_1": {
            "overall": {
                "all": {
                    "tp": 50,
                    "fp": 20,
                    "fn": 10,
                    "precision": 0.71,
                    "recall": 0.83,
                    "f1": 0.76
                },
                "small": {
                    "tp": 15,
                    "fp": 5,
                    "fn": 2,
                    "precision": 0.75,
                    "recall": 0.88,
                    "f1": 0.81
                },
                "medium": {
                    "tp": 25,
                    "fp": 10,
                    "fn": 5,
                    "precision": 0.71,
                    "recall": 0.83,
                    "f1": 0.76
                },
                "large": {
                    "tp": 10,
                    "fp": 5,
                    "fn": 3,
                    "precision": 0.67,
                    "recall": 0.77,
                    "f1": 0.71
                }
            },
            "per_sequence": {
                "sequence_1": {
                    "all": {
                        "tp": 30,
                        "fp": 15,
                        "fn": 7,
                        "precision": 0.67,
                        "recall": 0.81,
                        "f1": 0.73
                    },
                    "small": {
                        "tp": 10,
                        "fp": 3,
                        "fn": 1,
                        "precision": 0.77,
                        "recall": 0.91,
                        "f1": 0.83
                    },
                    "medium": {
                        "tp": 15,
                        "fp": 7,
                        "fn": 2,
                        "precision": 0.68,
                        "recall": 0.88,
                        "f1": 0.77
                    },
                    "large": {
                        "tp": 5,
                        "fp": 2,
                        "fn": 1,
                        "precision": 0.71,
                        "recall": 0.83,
                        "f1": 0.76
                    }
                }
            }
        },
        "model_2": {
            "overall": {
                "all": {
                    "tp": 60,
                    "fp": 25,
                    "fn": 15,
                    "precision": 0.71,
                    "recall": 0.80,
                    "f1": 0.75
                },
                "small": {
                    "tp": 20,
                    "fp": 6,
                    "fn": 3,
                    "precision": 0.77,
                    "recall": 0.87,
                    "f1": 0.82
                },
                "medium": {
                    "tp": 30,
                    "fp": 12,
                    "fn": 5,
                    "precision": 0.71,
                    "recall": 0.86,
                    "f1": 0.78
                },
                "large": {
                    "tp": 10,
                    "fp": 7,
                    "fn": 5,
                    "precision": 0.59,
                    "recall": 0.67,
                    "f1": 0.63
                }
            },
            "per_sequence": {
                "sequence_1": {
                    "all": {
                        "tp": 40,
                        "fp": 18,
                        "fn": 8,
                        "precision": 0.69,
                        "recall": 0.83,
                        "f1": 0.75
                    },
                    "small": {
                        "tp": 12,
                        "fp": 4,
                        "fn": 2,
                        "precision": 0.75,
                        "recall": 0.86,
                        "f1": 0.80
                    },
                    "medium": {
                        "tp": 20,
                        "fp": 8,
                        "fn": 3,
                        "precision": 0.71,
                        "recall": 0.87,
                        "f1": 0.78
                    },
                    "large": {
                        "tp": 8,
                        "fp": 6,
                        "fn": 3,
                        "precision": 0.57,
                        "recall": 0.73,
                        "f1": 0.64
                    }
                }
            }
        }
    }
```



## Citations

```bibtex {"id":"01HPS3ASFJXVQR88985GKHAQRE"}
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}}
```

```bibtex {"id":"01HPS3ASFJXVQR88985KRT478N"}
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}}
```