Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
import datetime | |
import os | |
import datasets | |
import evaluate | |
from seametrics.user_friendly.utils import calculate_from_payload | |
import wandb | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
}\ | |
@article{milan2016mot16, | |
title={MOT16: A benchmark for multi-object tracking}, | |
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad}, | |
journal={arXiv preprint arXiv:1603.00831}, | |
year={2016} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The MOT Metrics module is designed to evaluate multi-object tracking (MOT) | |
algorithms by computing various metrics based on predicted and ground truth bounding | |
boxes. It serves as a crucial tool in assessing the performance of MOT systems, | |
aiding in the iterative improvement of tracking algorithms.""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
max_iou (`float`, *optional*): | |
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive. | |
Default is 0.5. | |
""" | |
class UserFriendlyMetrics(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
), | |
"references": datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
), | |
} | |
), | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"], | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download external resources if needed | |
pass | |
def compute_from_payload( | |
self, | |
payload, | |
max_iou: float = 0.5, | |
filters={}, | |
recognition_thresholds=[0.3, 0.5, 0.8], | |
area_ranges_tuples=None, # Optional parameter | |
debug: bool = False, | |
): | |
""" | |
Call the required functions to compute the metrics and return it. | |
Returns: | |
dict: A dictionary containing the computed metrics based on the provided area in the area_ranges_tuples. | |
""" | |
return self.dummy_values(area_ranges_tuples) | |
def dummy_values(self, area_ranges_tuples=None): | |
"""Dummy randome values in the expected format that all new metrics need to return""" | |
# Use default ranges if none are provided | |
if area_ranges_tuples is None: | |
area_ranges_tuples = [ | |
("all", [0, 1e5**2]), | |
("small", [0**2, 6**2]), | |
("medium", [6**2, 12**2]), | |
("large", [12**2, 1e5**2]), | |
] | |
# Generate random dummy values | |
def generate_random_values(): | |
return { | |
"tp": random.randint(0, 100), # Random integer between 0 and 100 | |
"fp": random.randint(0, 50), # Random integer between 0 and 50 | |
"fn": random.randint(0, 50), # Random integer between 0 and 50 | |
"precision": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0 | |
"recall": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0 | |
"f1": round(random.uniform(0.5, 1.0), 2) # Random float between 0.5 and 1.0 | |
} | |
# Initialize output structure | |
dummy_output = { | |
"model_1": { | |
"overall": {}, | |
"per_sequence": { | |
"sequence_1": {} | |
} | |
} | |
} | |
# Populate only the ranges specified in area_ranges_tuples with random values | |
for range_name, _ in area_ranges_tuples: | |
dummy_output["model_1"]["overall"][range_name] = generate_random_values() | |
dummy_output["model_1"]["per_sequence"]["sequence_1"][range_name] = generate_random_values() | |
return dummy_output | |