|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class CaptionModel(nn.Module):
|
|
def __init__(self):
|
|
super(CaptionModel, self).__init__()
|
|
|
|
def forward(self, *args, **kwargs):
|
|
mode = kwargs.get('mode', 'forward')
|
|
if 'mode' in kwargs:
|
|
del kwargs['mode']
|
|
return getattr(self, '_' + mode)(*args, **kwargs)
|
|
|
|
def beam_search(self, init_state, init_logprobs, *args, **kwargs):
|
|
|
|
def add_diversity(beam_seq_table, logprobs, t, divm, diversity_lambda, bdash):
|
|
local_time = t - divm
|
|
unaug_logprobs = logprobs.clone()
|
|
batch_size = beam_seq_table[0].shape[0]
|
|
|
|
if divm > 0:
|
|
change = logprobs.new_zeros(batch_size, logprobs.shape[-1])
|
|
for prev_choice in range(divm):
|
|
prev_decisions = beam_seq_table[prev_choice][:, :, local_time]
|
|
for prev_labels in range(bdash):
|
|
change.scatter_add_(1, prev_decisions[:, prev_labels].unsqueeze(-1),
|
|
change.new_ones(batch_size, 1))
|
|
|
|
if local_time == 0:
|
|
logprobs = logprobs - change * diversity_lambda
|
|
else:
|
|
logprobs = logprobs - self.repeat_tensor(bdash, change) * diversity_lambda
|
|
|
|
return logprobs, unaug_logprobs
|
|
|
|
def beam_step(logprobs, unaug_logprobs, beam_size, t, beam_seq, beam_seq_logprobs, beam_logprobs_sum, state):
|
|
|
|
batch_size = beam_logprobs_sum.shape[0]
|
|
vocab_size = logprobs.shape[-1]
|
|
logprobs = logprobs.reshape(batch_size, -1, vocab_size)
|
|
if t == 0:
|
|
assert logprobs.shape[1] == 1
|
|
beam_logprobs_sum = beam_logprobs_sum[:, :1]
|
|
candidate_logprobs = beam_logprobs_sum.unsqueeze(-1) + logprobs
|
|
ys, ix = torch.sort(candidate_logprobs.reshape(candidate_logprobs.shape[0], -1), -1, True)
|
|
ys, ix = ys[:, :beam_size], ix[:, :beam_size]
|
|
beam_ix = ix // vocab_size
|
|
selected_ix = ix % vocab_size
|
|
state_ix = (beam_ix + torch.arange(batch_size).type_as(beam_ix).unsqueeze(-1) * logprobs.shape[1]).reshape(
|
|
-1)
|
|
|
|
if t > 0:
|
|
assert (beam_seq.gather(1, beam_ix.unsqueeze(-1).expand_as(beam_seq)) ==
|
|
beam_seq.reshape(-1, beam_seq.shape[-1])[state_ix].view_as(beam_seq)).all()
|
|
beam_seq = beam_seq.gather(1, beam_ix.unsqueeze(-1).expand_as(beam_seq))
|
|
|
|
beam_seq_logprobs = beam_seq_logprobs.gather(1, beam_ix.unsqueeze(-1).unsqueeze(-1).expand_as(
|
|
beam_seq_logprobs))
|
|
|
|
beam_seq = torch.cat([beam_seq, selected_ix.unsqueeze(-1)], -1)
|
|
beam_logprobs_sum = beam_logprobs_sum.gather(1, beam_ix) + \
|
|
logprobs.reshape(batch_size, -1).gather(1, ix)
|
|
assert (beam_logprobs_sum == ys).all()
|
|
_tmp_beam_logprobs = unaug_logprobs[state_ix].reshape(batch_size, -1, vocab_size)
|
|
beam_logprobs = unaug_logprobs.reshape(batch_size, -1, vocab_size).gather(1,
|
|
beam_ix.unsqueeze(-1).expand(-1,
|
|
-1,
|
|
vocab_size))
|
|
assert (_tmp_beam_logprobs == beam_logprobs).all()
|
|
beam_seq_logprobs = torch.cat([
|
|
beam_seq_logprobs,
|
|
beam_logprobs.reshape(batch_size, -1, 1, vocab_size)], 2)
|
|
|
|
new_state = [None for _ in state]
|
|
for _ix in range(len(new_state)):
|
|
new_state[_ix] = state[_ix][:, state_ix]
|
|
state = new_state
|
|
return beam_seq, beam_seq_logprobs, beam_logprobs_sum, state
|
|
|
|
opt = kwargs['opt']
|
|
temperature = opt.get('temperature', 1)
|
|
beam_size = opt.get('beam_size', 10)
|
|
group_size = opt.get('group_size', 1)
|
|
diversity_lambda = opt.get('diversity_lambda', 0.5)
|
|
decoding_constraint = opt.get('decoding_constraint', 0)
|
|
suppress_UNK = opt.get('suppress_UNK', 0)
|
|
length_penalty = utils.penalty_builder(opt.get('length_penalty', ''))
|
|
bdash = beam_size // group_size
|
|
|
|
batch_size = init_logprobs.shape[0]
|
|
device = init_logprobs.device
|
|
beam_seq_table = [torch.LongTensor(batch_size, bdash, 0).to(device) for _ in range(group_size)]
|
|
beam_seq_logprobs_table = [torch.FloatTensor(batch_size, bdash, 0, self.vocab_size + 1).to(device) for _ in
|
|
range(group_size)]
|
|
beam_logprobs_sum_table = [torch.zeros(batch_size, bdash).to(device) for _ in range(group_size)]
|
|
|
|
done_beams_table = [[[] for __ in range(group_size)] for _ in range(batch_size)]
|
|
state_table = [[_.clone() for _ in init_state] for _ in range(group_size)]
|
|
logprobs_table = [init_logprobs.clone() for _ in range(group_size)]
|
|
|
|
args = list(args)
|
|
args = utils.split_tensors(group_size, args)
|
|
if self.__class__.__name__ == 'AttEnsemble':
|
|
args = [[[args[j][i][k] for i in range(len(self.models))] for j in range(len(args))] for k in
|
|
range(group_size)]
|
|
else:
|
|
args = [[args[i][j] for i in range(len(args))] for j in range(group_size)]
|
|
|
|
for t in range(self.max_seq_length + group_size - 1):
|
|
for divm in range(group_size):
|
|
if t >= divm and t <= self.max_seq_length + divm - 1:
|
|
logprobs = logprobs_table[divm]
|
|
if decoding_constraint and t - divm > 0:
|
|
logprobs.scatter_(1, beam_seq_table[divm][:, :, t - divm - 1].reshape(-1, 1).to(device),
|
|
float('-inf'))
|
|
if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobs.size(1) - 1)] == 'UNK':
|
|
logprobs[:, logprobs.size(1) - 1] = logprobs[:, logprobs.size(1) - 1] - 1000
|
|
|
|
logprobs, unaug_logprobs = add_diversity(beam_seq_table, logprobs, t, divm, diversity_lambda, bdash)
|
|
|
|
|
|
beam_seq_table[divm], \
|
|
beam_seq_logprobs_table[divm], \
|
|
beam_logprobs_sum_table[divm], \
|
|
state_table[divm] = beam_step(logprobs,
|
|
unaug_logprobs,
|
|
bdash,
|
|
t - divm,
|
|
beam_seq_table[divm],
|
|
beam_seq_logprobs_table[divm],
|
|
beam_logprobs_sum_table[divm],
|
|
state_table[divm])
|
|
|
|
for b in range(batch_size):
|
|
is_end = beam_seq_table[divm][b, :, t - divm] == self.eos_idx
|
|
assert beam_seq_table[divm].shape[-1] == t - divm + 1
|
|
if t == self.max_seq_length + divm - 1:
|
|
is_end.fill_(1)
|
|
for vix in range(bdash):
|
|
if is_end[vix]:
|
|
final_beam = {
|
|
'seq': beam_seq_table[divm][b, vix].clone(),
|
|
'logps': beam_seq_logprobs_table[divm][b, vix].clone(),
|
|
'unaug_p': beam_seq_logprobs_table[divm][b, vix].sum().item(),
|
|
'p': beam_logprobs_sum_table[divm][b, vix].item()
|
|
}
|
|
final_beam['p'] = length_penalty(t - divm + 1, final_beam['p'])
|
|
done_beams_table[b][divm].append(final_beam)
|
|
beam_logprobs_sum_table[divm][b, is_end] -= 1000
|
|
|
|
|
|
it = beam_seq_table[divm][:, :, t - divm].reshape(-1)
|
|
logprobs_table[divm], state_table[divm] = self.get_logprobs_state(it.cuda(), *(
|
|
args[divm] + [state_table[divm]]))
|
|
logprobs_table[divm] = F.log_softmax(logprobs_table[divm] / temperature, dim=-1)
|
|
|
|
done_beams_table = [[sorted(done_beams_table[b][i], key=lambda x: -x['p'])[:bdash] for i in range(group_size)]
|
|
for b in range(batch_size)]
|
|
done_beams = [sum(_, []) for _ in done_beams_table]
|
|
return done_beams
|
|
|
|
def old_beam_search(self, init_state, init_logprobs, *args, **kwargs):
|
|
|
|
def add_diversity(beam_seq_table, logprobsf, t, divm, diversity_lambda, bdash):
|
|
local_time = t - divm
|
|
unaug_logprobsf = logprobsf.clone()
|
|
for prev_choice in range(divm):
|
|
prev_decisions = beam_seq_table[prev_choice][local_time]
|
|
for sub_beam in range(bdash):
|
|
for prev_labels in range(bdash):
|
|
logprobsf[sub_beam][prev_decisions[prev_labels]] = logprobsf[sub_beam][prev_decisions[
|
|
prev_labels]] - diversity_lambda
|
|
return unaug_logprobsf
|
|
|
|
|
|
def beam_step(logprobsf, unaug_logprobsf, beam_size, t, beam_seq, beam_seq_logprobs, beam_logprobs_sum, state):
|
|
|
|
ys, ix = torch.sort(logprobsf, 1, True)
|
|
candidates = []
|
|
cols = min(beam_size, ys.size(1))
|
|
rows = beam_size
|
|
if t == 0:
|
|
rows = 1
|
|
for c in range(cols):
|
|
for q in range(rows):
|
|
local_logprob = ys[q, c].item()
|
|
candidate_logprob = beam_logprobs_sum[q] + local_logprob
|
|
candidates.append({'c': ix[q, c], 'q': q, 'p': candidate_logprob, 'r': unaug_logprobsf[q]})
|
|
candidates = sorted(candidates, key=lambda x: -x['p'])
|
|
|
|
new_state = [_.clone() for _ in state]
|
|
if t >= 1:
|
|
beam_seq_prev = beam_seq[:t].clone()
|
|
beam_seq_logprobs_prev = beam_seq_logprobs[:t].clone()
|
|
for vix in range(beam_size):
|
|
v = candidates[vix]
|
|
if t >= 1:
|
|
beam_seq[:t, vix] = beam_seq_prev[:, v['q']]
|
|
beam_seq_logprobs[:t, vix] = beam_seq_logprobs_prev[:, v['q']]
|
|
for state_ix in range(len(new_state)):
|
|
new_state[state_ix][:, vix] = state[state_ix][:, v['q']]
|
|
beam_seq[t, vix] = v['c']
|
|
beam_seq_logprobs[t, vix] = v['r']
|
|
beam_logprobs_sum[vix] = v['p']
|
|
state = new_state
|
|
return beam_seq, beam_seq_logprobs, beam_logprobs_sum, state, candidates
|
|
|
|
opt = kwargs['opt']
|
|
temperature = opt.get('temperature', 1)
|
|
beam_size = opt.get('beam_size', 10)
|
|
group_size = opt.get('group_size', 1)
|
|
diversity_lambda = opt.get('diversity_lambda', 0.5)
|
|
decoding_constraint = opt.get('decoding_constraint', 0)
|
|
suppress_UNK = opt.get('suppress_UNK', 0)
|
|
length_penalty = utils.penalty_builder(opt.get('length_penalty', ''))
|
|
bdash = beam_size // group_size
|
|
|
|
|
|
beam_seq_table = [torch.LongTensor(self.max_seq_length, bdash).zero_() for _ in range(group_size)]
|
|
beam_seq_logprobs_table = [torch.FloatTensor(self.max_seq_length, bdash, self.vocab_size + 1).zero_() for _ in
|
|
range(group_size)]
|
|
beam_logprobs_sum_table = [torch.zeros(bdash) for _ in range(group_size)]
|
|
|
|
done_beams_table = [[] for _ in range(group_size)]
|
|
state_table = list(zip(*[_.chunk(group_size, 1) for _ in init_state]))
|
|
logprobs_table = list(init_logprobs.chunk(group_size, 0))
|
|
|
|
args = list(args)
|
|
if self.__class__.__name__ == 'AttEnsemble':
|
|
args = [[_.chunk(group_size) if _ is not None else [None] * group_size for _ in args_] for args_ in
|
|
args]
|
|
args = [[[args[j][i][k] for i in range(len(self.models))] for j in range(len(args))] for k in
|
|
range(group_size)]
|
|
else:
|
|
args = [_.chunk(group_size) if _ is not None else [None] * group_size for _ in args]
|
|
args = [[args[i][j] for i in range(len(args))] for j in range(group_size)]
|
|
|
|
for t in range(self.max_seq_length + group_size - 1):
|
|
for divm in range(group_size):
|
|
if t >= divm and t <= self.max_seq_length + divm - 1:
|
|
logprobsf = logprobs_table[divm].float()
|
|
if decoding_constraint and t - divm > 0:
|
|
logprobsf.scatter_(1, beam_seq_table[divm][t - divm - 1].unsqueeze(1).cuda(), float('-inf'))
|
|
if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobsf.size(1) - 1)] == 'UNK':
|
|
logprobsf[:, logprobsf.size(1) - 1] = logprobsf[:, logprobsf.size(1) - 1] - 1000
|
|
|
|
unaug_logprobsf = add_diversity(beam_seq_table, logprobsf, t, divm, diversity_lambda, bdash)
|
|
|
|
beam_seq_table[divm], \
|
|
beam_seq_logprobs_table[divm], \
|
|
beam_logprobs_sum_table[divm], \
|
|
state_table[divm], \
|
|
candidates_divm = beam_step(logprobsf,
|
|
unaug_logprobsf,
|
|
bdash,
|
|
t - divm,
|
|
beam_seq_table[divm],
|
|
beam_seq_logprobs_table[divm],
|
|
beam_logprobs_sum_table[divm],
|
|
state_table[divm])
|
|
|
|
for vix in range(bdash):
|
|
if beam_seq_table[divm][t - divm, vix] == self.eos_idx or t == self.max_seq_length + divm - 1:
|
|
final_beam = {
|
|
'seq': beam_seq_table[divm][:, vix].clone(),
|
|
'logps': beam_seq_logprobs_table[divm][:, vix].clone(),
|
|
'unaug_p': beam_seq_logprobs_table[divm][:, vix].sum().item(),
|
|
'p': beam_logprobs_sum_table[divm][vix].item()
|
|
}
|
|
final_beam['p'] = length_penalty(t - divm + 1, final_beam['p'])
|
|
done_beams_table[divm].append(final_beam)
|
|
beam_logprobs_sum_table[divm][vix] = -1000
|
|
|
|
|
|
it = beam_seq_table[divm][t - divm]
|
|
logprobs_table[divm], state_table[divm] = self.get_logprobs_state(it.cuda(), *(
|
|
args[divm] + [state_table[divm]]))
|
|
logprobs_table[divm] = F.log_softmax(logprobs_table[divm] / temperature, dim=-1)
|
|
|
|
done_beams_table = [sorted(done_beams_table[i], key=lambda x: -x['p'])[:bdash] for i in range(group_size)]
|
|
done_beams = sum(done_beams_table, [])
|
|
return done_beams
|
|
|
|
def sample_next_word(self, logprobs, sample_method, temperature):
|
|
if sample_method == 'greedy':
|
|
sampleLogprobs, it = torch.max(logprobs.data, 1)
|
|
it = it.view(-1).long()
|
|
elif sample_method == 'gumbel':
|
|
def sample_gumbel(shape, eps=1e-20):
|
|
U = torch.rand(shape).cuda()
|
|
return -torch.log(-torch.log(U + eps) + eps)
|
|
|
|
def gumbel_softmax_sample(logits, temperature):
|
|
y = logits + sample_gumbel(logits.size())
|
|
return F.log_softmax(y / temperature, dim=-1)
|
|
|
|
_logprobs = gumbel_softmax_sample(logprobs, temperature)
|
|
_, it = torch.max(_logprobs.data, 1)
|
|
sampleLogprobs = logprobs.gather(1, it.unsqueeze(1))
|
|
else:
|
|
logprobs = logprobs / temperature
|
|
if sample_method.startswith('top'):
|
|
top_num = float(sample_method[3:])
|
|
if 0 < top_num < 1:
|
|
probs = F.softmax(logprobs, dim=1)
|
|
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=1)
|
|
_cumsum = sorted_probs.cumsum(1)
|
|
mask = _cumsum < top_num
|
|
mask = torch.cat([torch.ones_like(mask[:, :1]), mask[:, :-1]], 1)
|
|
sorted_probs = sorted_probs * mask.float()
|
|
sorted_probs = sorted_probs / sorted_probs.sum(1, keepdim=True)
|
|
logprobs.scatter_(1, sorted_indices, sorted_probs.log())
|
|
else:
|
|
the_k = int(top_num)
|
|
tmp = torch.empty_like(logprobs).fill_(float('-inf'))
|
|
topk, indices = torch.topk(logprobs, the_k, dim=1)
|
|
tmp = tmp.scatter(1, indices, topk)
|
|
logprobs = tmp
|
|
it = torch.distributions.Categorical(logits=logprobs.detach()).sample()
|
|
sampleLogprobs = logprobs.gather(1, it.unsqueeze(1))
|
|
return it, sampleLogprobs
|
|
|