SIAT-RZJS's picture
Update app.py
7f56050 verified
import json
from KMVE_RG.models.SGF_model import SGF
from KMVE_RG.modules.tokenizers import Tokenizer
from KMVE_RG.modules.metrics import compute_scores
import numpy as np
from utils.thyroid_gen_config import config as thyroid_args
from utils.liver_gen_config import config as liver_args
from utils.breast_gen_config import config as breast_args
import gradio as gr
import torch
from PIL import Image
import os
from torchvision import transforms
np.random.seed(9233)
torch.manual_seed(9233)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class Generator(object):
def __init__(self, model_type):
if model_type == '甲状腺':
self.args = thyroid_args
elif model_type == '乳腺':
self.args = breast_args
elif model_type == '肝脏':
self.args = liver_args
self.tokenizer = Tokenizer(self.args)
self.model = SGF(self.args, self.tokenizer)
sd = torch.load(self.args.models)['state_dict']
msg = self.model.load_state_dict(sd)
print(msg)
self.model.eval()
self.metrics = compute_scores
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
with open(self.args.ann_path, 'r', encoding='utf-8-sig') as f:
self.data = json.load(f)
print('模型加载完成')
def image_process(self, img_paths):
image_1 = Image.open(os.path.join(self.args.image_dir, img_paths[0])).convert('RGB')
image_2 = Image.open(os.path.join(self.args.image_dir, img_paths[1])).convert('RGB')
if self.transform is not None:
image_1 = self.transform(image_1)
image_2 = self.transform(image_2)
image = torch.stack((image_1, image_2), 0)
return image
def generate(self, uid):
img_paths, report = self.data[uid]['img_paths'], self.data[uid]['report']
imgs = self.image_process(img_paths)
imgs = imgs.unsqueeze(0)
with torch.no_grad():
output, _ = self.model(imgs, mode='sample')
pred = self.tokenizer.decode(output[0].cpu().numpy())
gt = self.tokenizer.decode(self.tokenizer(report[:self.args.max_seq_length])[1:])
scores = self.metrics({0: [gt]}, {0: [pred]})
return pred, gt, scores
def visualize_images(self, uid):
image_1 = Image.open(os.path.join(self.args.image_dir, self.data[uid]['img_paths'][0])).convert('RGB')
image_2 = Image.open(os.path.join(self.args.image_dir, self.data[uid]['img_paths'][1])).convert('RGB')
return image_1, image_2
# 主应用程序
def demo():
with gr.Blocks() as app:
gr.Markdown("# 超声报告生成Demo")
gr.Markdown('### SIAT认知与交互技术中心')
gr.Markdown('### 项目主页:https://lijunrio.github.io/Ultrasound-Report-Generation/')
# 选择模型
with gr.Row():
model_choice = gr.Radio(choices=["甲状腺", "乳腺", "肝脏"], label="请选择模型类型", interactive=True)
model = gr.State()
# 展示UID按钮
uids = [f"uid_{i}" for i in range(20)]
with gr.Row():
uid_choice = gr.Radio(choices=[f"{uid}" for uid in uids], label="请选择uid", interactive=False)
# 定义展示图片的组件
with gr.Row():
image1_display = gr.Image(label="图像1", visible=True)
image2_display = gr.Image(label="图像2", visible=True)
# 定义生成报告的按钮和文本框
generate_button = gr.Button("生成报告", interactive=False)
generated_report_display = gr.Textbox(label="生成的报告", visible=True)
ground_truth_display = gr.Textbox(label="Ground Truth报告", visible=True)
nlp_score_display = gr.Textbox(label="NLP得分", visible=True)
# 加载模型的回调函数
def load_model_and_uids(model_type):
model = Generator(model_type)
return model, gr.update(interactive=True)
# 点击UID按钮后加载对应的图片
def on_uid_click(model, uid):
image1, image2 = model.visualize_images(uid)
# 显示图片和生成按钮
return image1, image2, gr.update(interactive=True)
# 点击生成按钮生成报告
def on_generate_click(model, uid):
generated_report, ground_truth_report, nlp_score = model.generate(uid)
# 展示生成的报告、Ground Truth 和 NLP 得分
return generated_report, ground_truth_report, f"NLP得分: {nlp_score}"
# 链接模型选择与UID按钮显示
model_choice.change(load_model_and_uids, inputs=model_choice, outputs=[model, uid_choice])
# 链接UID按钮点击与图片显示
uid_choice.change(on_uid_click, inputs=[model, uid_choice], outputs=[image1_display, image2_display, generate_button])
generate_button.click(on_generate_click, inputs=[model, uid_choice], outputs=[generated_report_display, ground_truth_display, nlp_score_display])
return app
if __name__ == '__main__':
# 启动应用程序
demo().launch()