StyleGAN-XL / app.py
hysts's picture
hysts HF staff
Update
3c407d6
#!/usr/bin/env python
from __future__ import annotations
import json
import gradio as gr
import numpy as np
from model import Model
DESCRIPTION = "# [StyleGAN-XL](https://github.com/autonomousvision/stylegan_xl)"
def update_class_index(name: str) -> dict:
if "imagenet" in name:
return gr.Slider(maximum=999, visible=True)
elif "cifar" in name:
return gr.Slider(maximum=9, visible=True)
else:
return gr.Slider(visible=False)
def get_sample_image_url(name: str) -> str:
sample_image_dir = "https://huggingface.co/spaces/hysts/StyleGAN-XL/resolve/main/samples"
return f"{sample_image_dir}/{name}.jpg"
def get_sample_image_markdown(name: str) -> str:
url = get_sample_image_url(name)
if name == "imagenet":
size = 128
class_index = "0-999"
seed = "0"
elif name == "cifar10":
size = 32
class_index = "0-9"
seed = "0-9"
elif name == "ffhq":
size = 256
class_index = "N/A"
seed = "0-99"
elif name == "pokemon":
size = 256
class_index = "N/A"
seed = "0-99"
else:
raise ValueError
return f"""
- size: {size}x{size}
- class_index: {class_index}
- seed: {seed}
- truncation: 0.7
![sample images]({url})"""
def load_class_names(name: str) -> list[str]:
with open(f"labels/{name}_classes.json") as f:
names = json.load(f)
return names
def get_class_name_df(name: str) -> list:
names = load_class_names(name)
return list(map(list, enumerate(names))) # type: ignore
IMAGENET_NAMES = load_class_names("imagenet")
CIFAR10_NAMES = load_class_names("cifar10")
def update_class_name(model_name: str, index: int) -> dict:
if "imagenet" in model_name:
if index < len(IMAGENET_NAMES):
value = IMAGENET_NAMES[index]
else:
value = "-"
return gr.Textbox(value=value, visible=True)
elif "cifar" in model_name:
if index < len(CIFAR10_NAMES):
value = CIFAR10_NAMES[index]
else:
value = "-"
return gr.Textbox(value=value, visible=True)
else:
return gr.Textbox(visible=False)
model = Model()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem("App"):
with gr.Row():
with gr.Column():
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[3])
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0)
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
class_index = gr.Slider(label="Class Index", minimum=0, maximum=999, step=1, value=83)
class_name = gr.Textbox(
label="Class Label", value=IMAGENET_NAMES[class_index.value], interactive=False
)
tx = gr.Slider(label="Translate X", minimum=-1, maximum=1, step=0.05, value=0)
ty = gr.Slider(label="Translate Y", minimum=-1, maximum=1, step=0.05, value=0)
angle = gr.Slider(label="Angle", minimum=-180, maximum=180, step=5, value=0)
run_button = gr.Button()
with gr.Column():
result = gr.Image(label="Result")
with gr.TabItem("Sample Images"):
with gr.Row():
model_name2 = gr.Dropdown(
label="Model",
choices=[
"imagenet",
"cifar10",
"ffhq",
"pokemon",
],
value="imagenet",
)
with gr.Row():
text = get_sample_image_markdown(model_name2.value)
sample_images = gr.Markdown(text)
with gr.TabItem("Class Names"):
with gr.Row():
dataset_name = gr.Dropdown(
label="Dataset",
choices=[
"imagenet",
"cifar10",
],
value="imagenet",
)
with gr.Row():
df = get_class_name_df("imagenet")
class_names = gr.Dataframe(value=df, col_count=2, headers=["Class Index", "Label"], interactive=False)
model_name.change(
fn=update_class_index,
inputs=model_name,
outputs=class_index,
queue=False,
api_name=False,
)
model_name.change(
fn=update_class_name,
inputs=[
model_name,
class_index,
],
outputs=class_name,
queue=False,
api_name=False,
)
class_index.change(
fn=update_class_name,
inputs=[
model_name,
class_index,
],
outputs=class_name,
queue=False,
api_name=False,
)
run_button.click(
fn=model.set_model_and_generate_image,
inputs=[
model_name,
seed,
psi,
class_index,
tx,
ty,
angle,
],
outputs=result,
api_name="run",
)
model_name2.change(
fn=get_sample_image_markdown,
inputs=model_name2,
outputs=sample_images,
queue=False,
api_name=False,
)
dataset_name.change(
fn=get_class_name_df,
inputs=dataset_name,
outputs=class_names,
queue=False,
api_name=False,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()