WAV2COM / src /main_gui.py
Fazhong Liu
init
9a70c5d
raw
history blame
6.42 kB
#code
#coding=UTF-8
# ! -*- coding: utf-8 -*-
from __future__ import print_function
#%% 导入必要的包
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import roc_curve
from scipy.interpolate import interp1d
from scipy.optimize import brentq
import matplotlib.pyplot as plt
from scipy.io.wavfile import read
from sklearn.preprocessing import normalize
from generate_array_feature import mald_feature, get_filelist
import os
import threading
import tkinter as tk
from tkinter import filedialog
from PIL import Image,ImageTk
from tkinter.messagebox import *
from tkinter import scrolledtext
top1=None
top2=None
top4=None
top5=None
top6=None
top7=None
img_open=None
img=None
v1=None
v2=None
ll=0
s2=''
s1=''
top3=None
t2=None
s=''
f1="fg.txt"
f2="fg.txt"
v=None
top=None
v={}
d1={}
d2={}
message=""
ermsg=""
picn=0
arg = []
class MyThread(threading.Thread):
def __init__(self, func, *args):#多线程启动,防止界面卡死
super().__init__()
self.func = func
self.args = args
self.setDaemon(True)
self.start()
def run(self):
self.func(*self.args)
def chf(tt1):#选择音频文件
global f1
f1=filedialog.askopenfilename()
showinfo("Open File", "Open a new File.")
tt1.delete(0.0, tk.END)
tt1.insert(0.0, f1)
def info():
pp='语言接口安全'
showinfo('Information',pp)
def build_model():
# %% 定义分类器model
# 这一个代码块是用来定义model的。
# 定义model的batch_size, feature长度之类的
batch_size = 10
feature_len = 110
loss_function = binary_crossentropy
no_epochs = 150
optimizer = Adam()
verbosity = 1
model = Sequential()
model.add(Dense(64, input_dim=feature_len, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=loss_function, optimizer=optimizer, metrics=['accuracy'])
# 至此,分类器模型的基本参数已经设置完毕,接下来可以从hdf5文件中导入预先训练好的model
model.load_weights("model.hdf5")
# 从train2.hdf5导入model。
# train2.hdf5 是从 data2.npy训练来的。
# 这样与 data1.npy数据不会有重叠
return model
def show_data(f1):
file_path = f1
print(f1)
rate, data = read(file_path)
plt.plot(data, label='Voice Signal')
plt.show()
def show_feature(f1):
file_path = f1
file_name = file_path.split("\\")[-1]
# define the normal or attack in variable cur_y
if 'normal' in file_name:
cur_y = 1 # normal case
elif 'attack' in file_name:
cur_y = 0
# split the file name
# read the data
rate, data = read(file_path)
X = mald_feature(rate, data)
# 从wav 文件提取特征的函数是 generate_array_feature.py
# X 是特征,特征的维度是110维
y = cur_y
# y是标签,1代表正常样本,0代表攻击样本
if y == 1: # 正常情况
title = 'the sample is normal'
else:
title = 'the sample is attack'
plt.plot(X)
plt.title(title)
plt.show()
def detect(f1, model):
file_path = f1
file_name = file_path.split("\\")[-1]
# define the normal or attack in variable cur_y
if 'normal' in file_name:
cur_y = 1 # normal case
elif 'attack' in file_name:
cur_y = 0
# split the file name
# read the data
rate, data = read(file_path)
X = []
X += [list(mald_feature(rate, data))]
X += [list(mald_feature(rate, data))]
# 加2次,因为model需要一个二维的
X = np.asarray(X)
# 从wav 文件提取特征的函数是 generate_array_feature.py
# X 是特征,特征的维度是110维
y = cur_y
# y是标签,1代表正常样本,0代表攻击样本
y_pred = np.round(model.predict(X))
# 开始预测
y_pred = y_pred[0]
if y == 1: # 正常情况
if y_pred == y:
print("成功预测") # 成功预测
print("车辆运行")
title = "指令正常,预测正确,车辆运行"
print('--------------')
print(title)
else:
print("失败预测") # 失败预测
print("车辆静止")
title = "指令正常,预测失败,车辆静止"
print('--------------')
print(title)
else: # 异常情况,决策是相反的
if y_pred == y:
print("成功预测") # 成功预测
print("车辆静止")
title = "指令异常,预测正确,车辆静止"
print('--------------')
print(title)
else:
print("失败预测") # 失败预测
print("车辆运行")
title = "指令异常,预测失败,车辆运行"
print('--------------')
print(title)
ans=""
root=tk.Tk(className='语音接口认证系统')
#root.iconbitmap('bf.ico')
root.attributes("-alpha",0.9)
tk.Label(root,height=10,width=5).grid(row=0,column=0)
fra=tk.Frame(root,width=55,height=100)
fra.grid(row=0,column=1)
tk.Label(root,height=10,width=5).grid(row=0,column=2)
tk.Label(fra,text='',height=1,width=10).grid(row=0,column=0)
tt1=tk.Text(fra,height=2,width=30)
tt1.grid(row=1,column=0)
tk.Button(fra, text='请先选择语音数据', command=lambda: chf(tt1)).grid(row=1,column=1)
model = build_model()
train=tk.Button(fra,text='显示音频内容',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(show_data,f1)) #完成
train.grid(row=3,column=0)
train=tk.Button(fra,text='显示音频的特征',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(show_feature,f1)) #完成
train.grid(row=5,column=0)
train=tk.Button(fra,text='显示检测结果',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(detect,f1,model)) #完成
train.grid(row=7,column=0)
tk.mainloop()