|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
import numpy as np
|
|
from tensorflow.keras.models import Sequential
|
|
from tensorflow.keras.layers import Dense, Dropout
|
|
from tensorflow.keras.losses import binary_crossentropy
|
|
from tensorflow.keras.optimizers import Adam
|
|
from sklearn.metrics import roc_curve
|
|
from scipy.interpolate import interp1d
|
|
from scipy.optimize import brentq
|
|
import matplotlib.pyplot as plt
|
|
from scipy.io.wavfile import read
|
|
from sklearn.preprocessing import normalize
|
|
from generate_array_feature import mald_feature, get_filelist
|
|
|
|
import os
|
|
import threading
|
|
import tkinter as tk
|
|
from tkinter import filedialog
|
|
from PIL import Image,ImageTk
|
|
from tkinter.messagebox import *
|
|
from tkinter import scrolledtext
|
|
top1=None
|
|
top2=None
|
|
top4=None
|
|
top5=None
|
|
top6=None
|
|
top7=None
|
|
img_open=None
|
|
img=None
|
|
v1=None
|
|
v2=None
|
|
ll=0
|
|
s2=''
|
|
s1=''
|
|
top3=None
|
|
t2=None
|
|
s=''
|
|
f1="fg.txt"
|
|
f2="fg.txt"
|
|
v=None
|
|
top=None
|
|
v={}
|
|
d1={}
|
|
d2={}
|
|
message=""
|
|
ermsg=""
|
|
picn=0
|
|
arg = []
|
|
class MyThread(threading.Thread):
|
|
def __init__(self, func, *args):
|
|
super().__init__()
|
|
|
|
self.func = func
|
|
self.args = args
|
|
|
|
self.setDaemon(True)
|
|
self.start()
|
|
|
|
def run(self):
|
|
self.func(*self.args)
|
|
|
|
def chf(tt1):
|
|
global f1
|
|
f1=filedialog.askopenfilename()
|
|
showinfo("Open File", "Open a new File.")
|
|
tt1.delete(0.0, tk.END)
|
|
tt1.insert(0.0, f1)
|
|
|
|
|
|
def info():
|
|
pp='语言接口安全'
|
|
showinfo('Information',pp)
|
|
|
|
def build_model():
|
|
|
|
|
|
|
|
batch_size = 10
|
|
feature_len = 110
|
|
loss_function = binary_crossentropy
|
|
no_epochs = 150
|
|
optimizer = Adam()
|
|
verbosity = 1
|
|
model = Sequential()
|
|
model.add(Dense(64, input_dim=feature_len, activation='relu'))
|
|
model.add(Dropout(0.2))
|
|
model.add(Dense(32, activation='relu'))
|
|
model.add(Dropout(0.2))
|
|
model.add(Dense(16, activation='relu'))
|
|
model.add(Dense(1, activation='sigmoid'))
|
|
model.compile(loss=loss_function, optimizer=optimizer, metrics=['accuracy'])
|
|
|
|
model.load_weights("model.hdf5")
|
|
|
|
|
|
|
|
return model
|
|
|
|
def show_data(f1):
|
|
file_path = f1
|
|
print(f1)
|
|
rate, data = read(file_path)
|
|
plt.plot(data, label='Voice Signal')
|
|
plt.show()
|
|
|
|
|
|
def show_feature(f1):
|
|
file_path = f1
|
|
file_name = file_path.split("\\")[-1]
|
|
|
|
if 'normal' in file_name:
|
|
cur_y = 1
|
|
elif 'attack' in file_name:
|
|
cur_y = 0
|
|
|
|
|
|
rate, data = read(file_path)
|
|
X = mald_feature(rate, data)
|
|
|
|
|
|
y = cur_y
|
|
|
|
if y == 1:
|
|
title = 'the sample is normal'
|
|
else:
|
|
title = 'the sample is attack'
|
|
plt.plot(X)
|
|
plt.title(title)
|
|
plt.show()
|
|
|
|
|
|
def detect(f1, model):
|
|
file_path = f1
|
|
file_name = file_path.split("\\")[-1]
|
|
|
|
if 'normal' in file_name:
|
|
cur_y = 1
|
|
elif 'attack' in file_name:
|
|
cur_y = 0
|
|
|
|
|
|
rate, data = read(file_path)
|
|
X = []
|
|
X += [list(mald_feature(rate, data))]
|
|
X += [list(mald_feature(rate, data))]
|
|
|
|
X = np.asarray(X)
|
|
|
|
|
|
|
|
y = cur_y
|
|
|
|
y_pred = np.round(model.predict(X))
|
|
|
|
y_pred = y_pred[0]
|
|
|
|
if y == 1:
|
|
if y_pred == y:
|
|
print("成功预测")
|
|
print("车辆运行")
|
|
title = "指令正常,预测正确,车辆运行"
|
|
print('--------------')
|
|
print(title)
|
|
else:
|
|
print("失败预测")
|
|
print("车辆静止")
|
|
title = "指令正常,预测失败,车辆静止"
|
|
print('--------------')
|
|
print(title)
|
|
else:
|
|
if y_pred == y:
|
|
print("成功预测")
|
|
print("车辆静止")
|
|
title = "指令异常,预测正确,车辆静止"
|
|
print('--------------')
|
|
print(title)
|
|
else:
|
|
print("失败预测")
|
|
print("车辆运行")
|
|
title = "指令异常,预测失败,车辆运行"
|
|
print('--------------')
|
|
print(title)
|
|
|
|
|
|
ans=""
|
|
|
|
|
|
root=tk.Tk(className='语音接口认证系统')
|
|
|
|
root.attributes("-alpha",0.9)
|
|
tk.Label(root,height=10,width=5).grid(row=0,column=0)
|
|
fra=tk.Frame(root,width=55,height=100)
|
|
fra.grid(row=0,column=1)
|
|
tk.Label(root,height=10,width=5).grid(row=0,column=2)
|
|
tk.Label(fra,text='',height=1,width=10).grid(row=0,column=0)
|
|
|
|
tt1=tk.Text(fra,height=2,width=30)
|
|
tt1.grid(row=1,column=0)
|
|
tk.Button(fra, text='请先选择语音数据', command=lambda: chf(tt1)).grid(row=1,column=1)
|
|
model = build_model()
|
|
|
|
|
|
train=tk.Button(fra,text='显示音频内容',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(show_data,f1))
|
|
train.grid(row=3,column=0)
|
|
|
|
train=tk.Button(fra,text='显示音频的特征',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(show_feature,f1))
|
|
train.grid(row=5,column=0)
|
|
|
|
train=tk.Button(fra,text='显示检测结果',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(detect,f1,model))
|
|
train.grid(row=7,column=0)
|
|
|
|
|
|
tk.mainloop()
|
|
|