|
import streamlit as st |
|
import os |
|
from dotenv import load_dotenv |
|
from agents import ResearchAgents |
|
from data_loader import DataLoader |
|
|
|
load_dotenv() |
|
|
|
|
|
st.set_page_config( |
|
page_title="Autogen Agent", |
|
page_icon="β‘", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
|
|
custom_css = """ |
|
<style> |
|
body { |
|
background-color: #f5f5f5; |
|
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; |
|
color: #ffffff; |
|
font-size: 16px; |
|
line-height: 1.6; |
|
} |
|
h1, h2, h3, h4, h5, h6 { |
|
font-weight: 600; |
|
color: #ffffff; |
|
} |
|
.css-18e3th9, .css-1d391kg { |
|
color: #ffffff; |
|
} |
|
.stButton>button { |
|
background-color: #4a90e2; |
|
color: #ffffff; |
|
border-radius: 5px; |
|
border: none; |
|
} |
|
.sidebar .sidebar-content { |
|
background-color: #ffffff; |
|
} |
|
.stMarkdown, .css-1d391kg { |
|
color: #ffffff; |
|
} |
|
</style> |
|
""" |
|
st.markdown(custom_css, unsafe_allow_html=True) |
|
|
|
|
|
st.title("π Virtual Research Assistant") |
|
|
|
num_results = 5 |
|
source_choice = st.sidebar.multiselect("Select Data Sources", options=["ArXiv", "Google Scholar"], default=["ArXiv"]) |
|
|
|
with st.sidebar: |
|
st.divider() |
|
st.markdown("<h3 style='color: #ffffff;'>Key Features</h3>", unsafe_allow_html=True) |
|
st.markdown(""" |
|
<ul style='list-style: none; padding: 0; color: #ffffff; text-align: left;'> |
|
<li style='margin-bottom: 8px;'>π <strong>Multi-Source Research Retrieval</strong></li> |
|
<li style='margin-bottom: 8px;'>π€ <strong>Integrated Chatbot Interaction</strong></li> |
|
<li style='margin-bottom: 8px;'>β¨ <strong>Advanced Summarization</strong></li> |
|
<li style='margin-bottom: 8px;'>π <strong>Automatic Query Expansion & Refinement</strong></li> |
|
<li style='margin-bottom: 8px;'>π <strong>Visual Data Presentation</strong></li> |
|
</ul> |
|
""", unsafe_allow_html=True) |
|
st.divider() |
|
st.markdown("<p style='text-align: center; color:#ffffff;'><em>Built with Groq | Autogen</em></p>", unsafe_allow_html=True) |
|
|
|
|
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
|
|
|
|
if not groq_api_key: |
|
st.error("GROQ_API_KEY is missing. Please set it in your environment variables.") |
|
st.stop() |
|
|
|
|
|
agents = ResearchAgents(groq_api_key) |
|
|
|
|
|
data_loader = DataLoader() |
|
|
|
|
|
query = st.chat_input("Enter a research topic:") |
|
|
|
|
|
if query: |
|
with st.spinner("Fetching research papers..."): |
|
|
|
all_papers = [] |
|
|
|
if "ArXiv" in source_choice: |
|
arxiv_papers = data_loader.fetch_arxiv_papers(query, limit=num_results) |
|
all_papers.extend(arxiv_papers) |
|
if "Google Scholar" in source_choice: |
|
google_scholar_papers = data_loader.fetch_google_scholar_papers(query) |
|
all_papers.extend(google_scholar_papers) |
|
|
|
|
|
if not all_papers: |
|
st.error("Failed to fetch papers. Try again!") |
|
else: |
|
processed_papers = [] |
|
|
|
|
|
for paper in all_papers: |
|
summary = agents.summarize_paper(paper['summary']) |
|
adv_dis = agents.analyze_advantages_disadvantages(summary) |
|
|
|
processed_papers.append({ |
|
"title": paper["title"], |
|
"link": paper["link"], |
|
"summary": summary, |
|
"advantages_disadvantages": adv_dis, |
|
}) |
|
|
|
|
|
st.subheader("Top Research Papers:") |
|
for i, paper in enumerate(processed_papers, 1): |
|
st.markdown(f"### {i}. {paper['title']}") |
|
st.markdown(f"π [Read Paper]({paper['link']})") |
|
st.write(f"**Summary:** {paper['summary']}") |
|
st.write(f"{paper['advantages_disadvantages']}") |
|
st.markdown("---") |
|
|