hjc-owo
init repo
966ae59
from __future__ import absolute_import
import os
import torch
import torch.nn as nn
from . import pretrained_networks as pretrained_torch_models
def spatial_average(x, keepdim=True):
return x.mean([2, 3], keepdim=keepdim)
def upsample(x):
return nn.Upsample(size=x.shape[2:], mode='bilinear', align_corners=False)(x)
def normalize_tensor(in_feat, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True))
return in_feat / (norm_factor + eps)
# Learned perceptual metric
class LPIPS(nn.Module):
def __init__(self,
pretrained=True,
net='alex',
version='0.1',
lpips=True,
spatial=False,
pnet_rand=False,
pnet_tune=False,
use_dropout=True,
model_path=None,
eval_mode=True,
verbose=True):
""" Initializes a perceptual loss torch.nn.Module
Parameters (default listed first)
---------------------------------
lpips : bool
[True] use linear layers on top of base/trunk network
[False] means no linear layers; each layer is averaged together
pretrained : bool
This flag controls the linear layers, which are only in effect when lpips=True above
[True] means linear layers are calibrated with human perceptual judgments
[False] means linear layers are randomly initialized
pnet_rand : bool
[False] means trunk loaded with ImageNet classification weights
[True] means randomly initialized trunk
net : str
['alex','vgg','squeeze'] are the base/trunk networks available
version : str
['v0.1'] is the default and latest
['v0.0'] contained a normalization bug; corresponds to old arxiv v1 (https://arxiv.org/abs/1801.03924v1)
model_path : 'str'
[None] is default and loads the pretrained weights from paper https://arxiv.org/abs/1801.03924v1
The following parameters should only be changed if training the network:
eval_mode : bool
[True] is for test mode (default)
[False] is for training mode
pnet_tune
[False] keep base/trunk frozen
[True] tune the base/trunk network
use_dropout : bool
[True] to use dropout when training linear layers
[False] for no dropout when training linear layers
"""
super(LPIPS, self).__init__()
if verbose:
print('Setting up [%s] perceptual loss: trunk [%s], v[%s], spatial [%s]' %
('LPIPS' if lpips else 'baseline', net, version, 'on' if spatial else 'off'))
self.pnet_type = net
self.pnet_tune = pnet_tune
self.pnet_rand = pnet_rand
self.spatial = spatial
self.lpips = lpips # false means baseline of just averaging all layers
self.version = version
self.scaling_layer = ScalingLayer()
if self.pnet_type in ['vgg', 'vgg16']:
net_type = pretrained_torch_models.vgg16
self.chns = [64, 128, 256, 512, 512]
elif self.pnet_type == 'alex':
net_type = pretrained_torch_models.alexnet
self.chns = [64, 192, 384, 256, 256]
elif self.pnet_type == 'squeeze':
net_type = pretrained_torch_models.squeezenet
self.chns = [64, 128, 256, 384, 384, 512, 512]
self.L = len(self.chns)
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
if lpips:
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
if self.pnet_type == 'squeeze': # 7 layers for squeezenet
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
self.lins += [self.lin5, self.lin6]
self.lins = nn.ModuleList(self.lins)
if pretrained:
if model_path is None:
model_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
f"weights/v{version}/{net}.pth"
)
if verbose:
print('Loading model from: %s' % model_path)
self.load_state_dict(torch.load(model_path, map_location='cpu'), strict=False)
if eval_mode:
self.eval()
def forward(self, in0, in1, return_per_layer=False, normalize=False):
if normalize: # turn on this flag if input is [0,1] so it can be adjusted to [-1, 1]
in0 = 2 * in0 - 1
in1 = 2 * in1 - 1
# Noting: v0.0 - original release had a bug, where input was not scaled
if self.version == '0.1':
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1))
else:
in0_input, in1_input = in0, in1
# model forward
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(self.L):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
if self.lpips:
if self.spatial:
res = [upsample(self.lins[kk](diffs[kk])) for kk in range(self.L)]
else:
res = [spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]
else:
if self.spatial:
res = [upsample(diffs[kk].sum(dim=1, keepdim=True)) for kk in range(self.L)]
else:
res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)]
loss = sum(res)
if return_per_layer:
return loss, res
else:
return loss
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
"""A single linear layer which does a 1x1 conv"""
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = [nn.Dropout(), ] if (use_dropout) else []
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)