Spaces:
Running
Running
from __future__ import absolute_import | |
import os | |
import torch | |
import torch.nn as nn | |
from . import pretrained_networks as pretrained_torch_models | |
def spatial_average(x, keepdim=True): | |
return x.mean([2, 3], keepdim=keepdim) | |
def upsample(x): | |
return nn.Upsample(size=x.shape[2:], mode='bilinear', align_corners=False)(x) | |
def normalize_tensor(in_feat, eps=1e-10): | |
norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True)) | |
return in_feat / (norm_factor + eps) | |
# Learned perceptual metric | |
class LPIPS(nn.Module): | |
def __init__(self, | |
pretrained=True, | |
net='alex', | |
version='0.1', | |
lpips=True, | |
spatial=False, | |
pnet_rand=False, | |
pnet_tune=False, | |
use_dropout=True, | |
model_path=None, | |
eval_mode=True, | |
verbose=True): | |
""" Initializes a perceptual loss torch.nn.Module | |
Parameters (default listed first) | |
--------------------------------- | |
lpips : bool | |
[True] use linear layers on top of base/trunk network | |
[False] means no linear layers; each layer is averaged together | |
pretrained : bool | |
This flag controls the linear layers, which are only in effect when lpips=True above | |
[True] means linear layers are calibrated with human perceptual judgments | |
[False] means linear layers are randomly initialized | |
pnet_rand : bool | |
[False] means trunk loaded with ImageNet classification weights | |
[True] means randomly initialized trunk | |
net : str | |
['alex','vgg','squeeze'] are the base/trunk networks available | |
version : str | |
['v0.1'] is the default and latest | |
['v0.0'] contained a normalization bug; corresponds to old arxiv v1 (https://arxiv.org/abs/1801.03924v1) | |
model_path : 'str' | |
[None] is default and loads the pretrained weights from paper https://arxiv.org/abs/1801.03924v1 | |
The following parameters should only be changed if training the network: | |
eval_mode : bool | |
[True] is for test mode (default) | |
[False] is for training mode | |
pnet_tune | |
[False] keep base/trunk frozen | |
[True] tune the base/trunk network | |
use_dropout : bool | |
[True] to use dropout when training linear layers | |
[False] for no dropout when training linear layers | |
""" | |
super(LPIPS, self).__init__() | |
if verbose: | |
print('Setting up [%s] perceptual loss: trunk [%s], v[%s], spatial [%s]' % | |
('LPIPS' if lpips else 'baseline', net, version, 'on' if spatial else 'off')) | |
self.pnet_type = net | |
self.pnet_tune = pnet_tune | |
self.pnet_rand = pnet_rand | |
self.spatial = spatial | |
self.lpips = lpips # false means baseline of just averaging all layers | |
self.version = version | |
self.scaling_layer = ScalingLayer() | |
if self.pnet_type in ['vgg', 'vgg16']: | |
net_type = pretrained_torch_models.vgg16 | |
self.chns = [64, 128, 256, 512, 512] | |
elif self.pnet_type == 'alex': | |
net_type = pretrained_torch_models.alexnet | |
self.chns = [64, 192, 384, 256, 256] | |
elif self.pnet_type == 'squeeze': | |
net_type = pretrained_torch_models.squeezenet | |
self.chns = [64, 128, 256, 384, 384, 512, 512] | |
self.L = len(self.chns) | |
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune) | |
if lpips: | |
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) | |
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) | |
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) | |
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) | |
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) | |
self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] | |
if self.pnet_type == 'squeeze': # 7 layers for squeezenet | |
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout) | |
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout) | |
self.lins += [self.lin5, self.lin6] | |
self.lins = nn.ModuleList(self.lins) | |
if pretrained: | |
if model_path is None: | |
model_path = os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
f"weights/v{version}/{net}.pth" | |
) | |
if verbose: | |
print('Loading model from: %s' % model_path) | |
self.load_state_dict(torch.load(model_path, map_location='cpu'), strict=False) | |
if eval_mode: | |
self.eval() | |
def forward(self, in0, in1, return_per_layer=False, normalize=False): | |
if normalize: # turn on this flag if input is [0,1] so it can be adjusted to [-1, 1] | |
in0 = 2 * in0 - 1 | |
in1 = 2 * in1 - 1 | |
# Noting: v0.0 - original release had a bug, where input was not scaled | |
if self.version == '0.1': | |
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) | |
else: | |
in0_input, in1_input = in0, in1 | |
# model forward | |
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input) | |
feats0, feats1, diffs = {}, {}, {} | |
for kk in range(self.L): | |
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) | |
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 | |
if self.lpips: | |
if self.spatial: | |
res = [upsample(self.lins[kk](diffs[kk])) for kk in range(self.L)] | |
else: | |
res = [spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)] | |
else: | |
if self.spatial: | |
res = [upsample(diffs[kk].sum(dim=1, keepdim=True)) for kk in range(self.L)] | |
else: | |
res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)] | |
loss = sum(res) | |
if return_per_layer: | |
return loss, res | |
else: | |
return loss | |
class ScalingLayer(nn.Module): | |
def __init__(self): | |
super(ScalingLayer, self).__init__() | |
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None]) | |
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None]) | |
def forward(self, inp): | |
return (inp - self.shift) / self.scale | |
class NetLinLayer(nn.Module): | |
"""A single linear layer which does a 1x1 conv""" | |
def __init__(self, chn_in, chn_out=1, use_dropout=False): | |
super(NetLinLayer, self).__init__() | |
layers = [nn.Dropout(), ] if (use_dropout) else [] | |
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] | |
self.model = nn.Sequential(*layers) | |
def forward(self, x): | |
return self.model(x) | |