Spaces:
Running
Running
import collections | |
import re | |
import clip | |
import torch | |
import torch.nn as nn | |
from torchvision import models, transforms | |
def compute_grad_norm_losses(losses_dict, model, points_mlp): | |
''' | |
Balances multiple losses by weighting them inversly proportional | |
to their overall gradient contribution. | |
Args: | |
losses: A dictionary of losses. | |
model: A PyTorch model. | |
Returns: | |
A dictionary of loss weights. | |
''' | |
grad_norms = {} | |
for loss_name, loss in losses_dict.items(): | |
loss.backward(retain_graph=True) | |
grad_sum = sum([w.grad.abs().sum().item() for w in model.parameters() if w.grad is not None]) | |
num_elem = sum([w.numel() for w in model.parameters() if w.grad is not None]) | |
grad_norms[loss_name] = grad_sum / num_elem | |
model.zero_grad() | |
points_mlp.zero_grad() | |
grad_norms_total = sum(grad_norms.values()) | |
loss_weights = {} | |
for loss_name, loss in losses_dict.items(): | |
weight = (grad_norms_total - grad_norms[loss_name]) / ((len(losses_dict) - 1) * grad_norms_total) | |
loss_weights[loss_name] = weight | |
return loss_weights | |
class Loss(nn.Module): | |
def __init__(self, args, mask=None, device="cpu"): | |
super(Loss, self).__init__() | |
self.args = args | |
self.percep_loss = args.percep_loss | |
self.device = device | |
self.train_with_clip = args.train_with_clip | |
self.clip_weight = args.clip_weight | |
self.start_clip = args.start_clip | |
self.clip_conv_loss = args.clip_conv_loss | |
self.clip_mask_loss = args.clip_mask_loss | |
self.clip_fc_loss_weight = args.clip_fc_loss_weight | |
self.clip_text_guide = args.clip_text_guide | |
self.width_optim = args.width_optim | |
self.width_loss_weight = args.width_loss_weight | |
self.ratio_loss = args.ratio_loss | |
if isinstance(args.clip_conv_layer_weights, str): | |
self.args.clip_conv_layer_weights = [ | |
float(item) for item in args.clip_conv_layer_weights.split(',') | |
] | |
self.losses_to_apply = self.get_losses_to_apply() | |
self.gradnorm = args.gradnorm | |
if args.gradnorm: | |
self.new_weights = {} | |
self.loss_mapper = {} | |
if self.clip_conv_loss: | |
self.loss_mapper["clip_conv_loss"] = CLIPConvLoss(args, mask, device) | |
if self.clip_mask_loss: | |
self.loss_mapper["clip_mask_loss"] = CLIPmaskLoss(args, mask, device) | |
if self.width_optim: | |
self.loss_mapper["width_loss"] = WidthLoss(args, device) | |
if self.ratio_loss: | |
self.loss_mapper["ratio_loss"] = RatioLoss(args, device) | |
def get_losses_to_apply(self): | |
losses_to_apply = [] | |
if self.percep_loss != "none": | |
losses_to_apply.append(self.percep_loss) | |
if self.train_with_clip and self.start_clip == 0: | |
losses_to_apply.append("clip") | |
if self.clip_conv_loss: | |
losses_to_apply.append("clip_conv_loss") | |
if self.clip_mask_loss: | |
losses_to_apply.append("clip_mask_loss") | |
if self.clip_text_guide: | |
losses_to_apply.append("clip_text") | |
if self.width_optim: | |
losses_to_apply.append("width_loss") | |
if self.ratio_loss: | |
losses_to_apply.append("ratio_loss") | |
return losses_to_apply | |
def update_losses_to_apply(self, epoch, width_opt=None, mode="train"): | |
if "clip" not in self.losses_to_apply: | |
if self.train_with_clip: | |
if epoch > self.start_clip: | |
self.losses_to_apply.append("clip") | |
# for width loss switch | |
if width_opt is not None: | |
if self.width_optim and "width_loss" not in self.losses_to_apply and mode == "eval": | |
self.losses_to_apply.append("width_loss") | |
if width_opt and "width_loss" not in self.losses_to_apply: | |
self.losses_to_apply.append("width_loss") | |
if not width_opt and "width_loss" in self.losses_to_apply and mode == "train": | |
self.losses_to_apply.remove("width_loss") | |
def forward(self, sketches, targets, epoch, widths=None, renderer=None, optimizer=None, mode="train", | |
width_opt=None): | |
loss = 0 | |
self.update_losses_to_apply(epoch, width_opt, mode) | |
losses_dict = {} | |
loss_coeffs = {} | |
if self.width_optim: | |
loss_coeffs["width_loss"] = self.width_loss_weight | |
clip_loss_names = [] | |
for loss_name in self.losses_to_apply: | |
if loss_name in ["clip_conv_loss", "clip_mask_loss"]: | |
conv_loss = self.loss_mapper[loss_name]( | |
sketches, targets, mode) | |
for layer in conv_loss.keys(): | |
if "normalization" in layer: | |
loss_coeffs[layer] = 0 # include layer 11 in gradnorm but not in final loss | |
losses_dict[layer] = conv_loss[layer] | |
else: | |
layer_w_index = int(re.findall(r'\d+', layer)[0]) # get the layer's number | |
losses_dict[layer] = conv_loss[layer] | |
loss_coeffs[layer] = self.args.clip_conv_layer_weights[layer_w_index] | |
clip_loss_names.append(layer) | |
elif loss_name == "width_loss": | |
losses_dict[loss_name] = self.loss_mapper[loss_name](widths, renderer.get_strokes_in_canvas_count()) | |
elif loss_name == "l2": | |
losses_dict[loss_name] = self.loss_mapper[loss_name]( | |
sketches, targets).mean() | |
elif loss_name == "ratio_loss": | |
continue | |
else: | |
losses_dict[loss_name] = self.loss_mapper[loss_name](sketches, targets, mode).mean() | |
losses_dict_original = losses_dict.copy() | |
if self.gradnorm: | |
if mode == "train": | |
if self.width_optim: | |
self.new_weights = compute_grad_norm_losses(losses_dict, renderer.get_width_mlp(), | |
renderer.get_mlp()) | |
else: | |
self.new_weights = compute_grad_norm_losses(losses_dict, renderer.get_mlp(), renderer.get_mlp()) | |
# if mode is eval, take the norm wieghts of prev step, since we don't have grads here | |
for key in losses_dict.keys(): | |
# losses_dict_copy[key] = losses_dict_copy[key] * self.new_weights[key] | |
losses_dict[key] = losses_dict[key] * self.new_weights[key] | |
losses_dict_copy = {} # return the normalised losses before weighting | |
for k_ in losses_dict.keys(): | |
losses_dict_copy[k_] = losses_dict[k_].clone().detach() | |
for key in losses_dict.keys(): | |
# loss = loss + losses_dict[key] * loss_coeffs[key] | |
if loss_coeffs[key] == 0: | |
losses_dict[key] = losses_dict[key].detach() * loss_coeffs[key] | |
else: | |
losses_dict[key] = losses_dict[key] * loss_coeffs[key] | |
if self.ratio_loss: | |
losses_dict["ratio_loss"] = self.loss_mapper["ratio_loss"](losses_dict_original, clip_loss_names).mean() | |
losses_dict_original_detach = {} | |
for k_ in losses_dict_original.keys(): | |
losses_dict_original_detach[k_] = losses_dict_original[k_].clone().detach() | |
return losses_dict, losses_dict_copy, losses_dict_original_detach | |
class CLIPLoss(torch.nn.Module): | |
def __init__(self, args, device): | |
super(CLIPLoss, self).__init__() | |
self.args = args | |
self.device = device | |
self.model, clip_preprocess = clip.load( | |
'ViT-B/32', self.device, jit=False) | |
self.model.eval() | |
self.preprocess = transforms.Compose( | |
[clip_preprocess.transforms[-1]]) # clip normalisation | |
self.NUM_AUGS = args.num_aug_clip | |
augemntations = [] | |
if "affine" in args.augemntations: | |
augemntations.append(transforms.RandomPerspective( | |
fill=0, p=1.0, distortion_scale=0.5)) | |
augemntations.append(transforms.RandomResizedCrop( | |
224, scale=(0.8, 0.8), ratio=(1.0, 1.0))) | |
augemntations.append( | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))) | |
self.augment_trans = transforms.Compose(augemntations) | |
self.calc_target = True | |
self.include_target_in_aug = args.include_target_in_aug | |
self.counter = 0 | |
self.augment_both = args.augment_both | |
def forward(self, sketches, targets, mode="train"): | |
if self.calc_target: | |
targets_ = self.preprocess(targets).to(self.device) | |
self.targets_features = self.model.encode_image(targets_).detach() | |
self.calc_target = False | |
if mode == "eval": | |
# for regular clip distance, no augmentations | |
with torch.no_grad(): | |
sketches = self.preprocess(sketches).to(self.device) | |
sketches_features = self.model.encode_image(sketches) | |
return 1. - torch.cosine_similarity(sketches_features, self.targets_features) | |
loss_clip = 0 | |
sketch_augs = [] | |
img_augs = [] | |
for n in range(self.NUM_AUGS): | |
augmented_pair = self.augment_trans(torch.cat([sketches, targets])) | |
sketch_augs.append(augmented_pair[0].unsqueeze(0)) | |
sketch_batch = torch.cat(sketch_augs) | |
sketch_features = self.model.encode_image(sketch_batch) | |
for n in range(self.NUM_AUGS): | |
loss_clip += (1. - torch.cosine_similarity( | |
sketch_features[n:n + 1], self.targets_features, dim=1)) | |
self.counter += 1 | |
return loss_clip | |
# return 1. - torch.cosine_similarity(sketches_features, self.targets_features) | |
class LPIPS(torch.nn.Module): | |
def __init__(self, pretrained=True, normalize=True, pre_relu=True, device=None): | |
""" | |
Args: | |
pre_relu(bool): if True, selects features **before** reLU activations | |
""" | |
super(LPIPS, self).__init__() | |
# VGG using perceptually-learned weights (LPIPS metric) | |
self.normalize = normalize | |
self.pretrained = pretrained | |
augemntations = [] | |
augemntations.append(transforms.RandomPerspective( | |
fill=0, p=1.0, distortion_scale=0.5)) | |
augemntations.append(transforms.RandomResizedCrop( | |
224, scale=(0.8, 0.8), ratio=(1.0, 1.0))) | |
self.augment_trans = transforms.Compose(augemntations) | |
self.feature_extractor = LPIPS._FeatureExtractor( | |
pretrained, pre_relu).to(device) | |
def _l2_normalize_features(self, x, eps=1e-10): | |
nrm = torch.sqrt(torch.sum(x * x, dim=1, keepdim=True)) | |
return x / (nrm + eps) | |
def forward(self, pred, target, mode="train"): | |
"""Compare VGG features of two inputs.""" | |
# Get VGG features | |
sketch_augs, img_augs = [pred], [target] | |
if mode == "train": | |
for n in range(4): | |
augmented_pair = self.augment_trans(torch.cat([pred, target])) | |
sketch_augs.append(augmented_pair[0].unsqueeze(0)) | |
img_augs.append(augmented_pair[1].unsqueeze(0)) | |
xs = torch.cat(sketch_augs, dim=0) | |
ys = torch.cat(img_augs, dim=0) | |
pred = self.feature_extractor(xs) | |
target = self.feature_extractor(ys) | |
# L2 normalize features | |
if self.normalize: | |
pred = [self._l2_normalize_features(f) for f in pred] | |
target = [self._l2_normalize_features(f) for f in target] | |
# TODO(mgharbi) Apply Richard's linear weights? | |
if self.normalize: | |
diffs = [torch.sum((p - t) ** 2, 1) | |
for (p, t) in zip(pred, target)] | |
else: | |
# mean instead of sum to avoid super high range | |
diffs = [torch.mean((p - t) ** 2, 1) | |
for (p, t) in zip(pred, target)] | |
# Spatial average | |
diffs = [diff.mean([1, 2]) for diff in diffs] | |
return sum(diffs) | |
class _FeatureExtractor(torch.nn.Module): | |
def __init__(self, pretrained, pre_relu): | |
super(LPIPS._FeatureExtractor, self).__init__() | |
vgg_pretrained = models.vgg16(pretrained=pretrained).features | |
self.breakpoints = [0, 4, 9, 16, 23, 30] | |
if pre_relu: | |
for i, _ in enumerate(self.breakpoints[1:]): | |
self.breakpoints[i + 1] -= 1 | |
# Split at the maxpools | |
for i, b in enumerate(self.breakpoints[:-1]): | |
ops = torch.nn.Sequential() | |
for idx in range(b, self.breakpoints[i + 1]): | |
op = vgg_pretrained[idx] | |
ops.add_module(str(idx), op) | |
# print(ops) | |
self.add_module("group{}".format(i), ops) | |
# No gradients | |
for p in self.parameters(): | |
p.requires_grad = False | |
# Torchvision's normalization: <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101> | |
self.register_buffer("shift", torch.Tensor( | |
[0.485, 0.456, 0.406]).view(1, 3, 1, 1)) | |
self.register_buffer("scale", torch.Tensor( | |
[0.229, 0.224, 0.225]).view(1, 3, 1, 1)) | |
def forward(self, x): | |
feats = [] | |
x = (x - self.shift) / self.scale | |
for idx in range(len(self.breakpoints) - 1): | |
m = getattr(self, "group{}".format(idx)) | |
x = m(x) | |
feats.append(x) | |
return feats | |
class WidthLoss(torch.nn.Module): | |
def __init__(self, args, device): | |
super(WidthLoss, self).__init__() | |
self.width_loss_type = args.width_loss_type | |
self.width_loss_weight = args.width_loss_weight | |
self.zero = torch.tensor(0).to(device) | |
def forward(self, widths, strokes_in_canvas_count): | |
sum_w = torch.sum(widths) | |
if self.width_loss_type == "L1_hinge": # this option is deprecated | |
return torch.max(self.zero, sum_w - self.width_loss_weight) | |
return sum_w / strokes_in_canvas_count | |
class RatioLoss(torch.nn.Module): | |
def __init__(self, args, device): | |
super(RatioLoss, self).__init__() | |
self.target_ratio = args.ratio_loss | |
self.mse_loss = nn.MSELoss() | |
def forward(self, losses_dict_original, clip_loss_names): | |
loss_clip = 0 | |
for clip_loss in clip_loss_names: | |
loss_clip = loss_clip + losses_dict_original[clip_loss] | |
loss_clip = loss_clip * self.target_ratio | |
width_loss = losses_dict_original["width_loss"] | |
return self.mse_loss(width_loss, loss_clip) | |
class L2_(torch.nn.Module): | |
def __init__(self): | |
""" | |
Args: | |
pre_relu(bool): if True, selects features **before** reLU activations | |
""" | |
super(L2_, self).__init__() | |
# VGG using perceptually-learned weights (LPIPS metric) | |
augemntations = [] | |
augemntations.append(transforms.RandomPerspective( | |
fill=0, p=1.0, distortion_scale=0.5)) | |
augemntations.append(transforms.RandomResizedCrop( | |
224, scale=(0.8, 0.8), ratio=(1.0, 1.0))) | |
augemntations.append( | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))) | |
self.augment_trans = transforms.Compose(augemntations) | |
# LOG.warning("LPIPS is untested") | |
def forward(self, pred, target, mode="train"): | |
"""Compare VGG features of two inputs.""" | |
# Get VGG features | |
sketch_augs, img_augs = [pred], [target] | |
if mode == "train": | |
for n in range(4): | |
augmented_pair = self.augment_trans(torch.cat([pred, target])) | |
sketch_augs.append(augmented_pair[0].unsqueeze(0)) | |
img_augs.append(augmented_pair[1].unsqueeze(0)) | |
pred = torch.cat(sketch_augs, dim=0) | |
target = torch.cat(img_augs, dim=0) | |
diffs = [torch.square(p - t).mean() for (p, t) in zip(pred, target)] | |
return sum(diffs) | |
class CLIPVisualEncoder(nn.Module): | |
def __init__(self, clip_model, device, mask_cls="none", apply_mask=False, mask_attention=False): | |
super().__init__() | |
self.clip_model = clip_model | |
self.featuremaps = None | |
self.device = device | |
self.n_channels = 3 | |
self.kernel_h = 32 | |
self.kernel_w = 32 | |
self.step = 32 | |
self.num_patches = 49 | |
self.mask_cls = mask_cls | |
self.apply_mask = apply_mask | |
self.mask_attention = mask_attention | |
for i in range(12): # 12 resblocks in VIT visual transformer | |
self.clip_model.visual.transformer.resblocks[i].register_forward_hook( | |
self.make_hook(i)) | |
def make_hook(self, name): | |
def hook(module, input, output): | |
if len(output.shape) == 3: | |
self.featuremaps[name] = output.permute( | |
1, 0, 2) # LND -> NLD bs, smth, 768 | |
else: | |
self.featuremaps[name] = output | |
return hook | |
def forward(self, x, masks=None, mode="train"): | |
masks_flat = torch.ones((x.shape[0], 50, 768)).to(self.device) # without any effect | |
attn_map = None | |
if masks is not None and self.apply_mask: | |
x_copy = x.detach().clone() | |
patches_x = x_copy.unfold(2, self.kernel_h, self.step).unfold(3, self.kernel_w, self.step).reshape(-1, | |
self.n_channels, | |
self.num_patches, | |
32, 32) | |
# split the masks into patches (the same input patches to the transformer) | |
# shape is (batch_size, channel, num_patches, patch_size, patch_size) = (5, 3, 49, 32, 32) | |
patches_mask = masks.unfold(2, self.kernel_h, self.step).unfold(3, self.kernel_w, self.step).reshape(-1, | |
self.n_channels, | |
self.num_patches, | |
32, 32) | |
# masks_ is a binary mask (batch_size, 1, 7, ,7) to say which patch should be masked out | |
masks_ = torch.ones((x.shape[0], 1, 7, 7)).to(self.device) | |
for i in range(masks.shape[0]): | |
for j in range(self.num_patches): | |
# we mask a patch if more than 20% of the patch is masked | |
zeros = (patches_mask[i, 0, j] == 0).sum() / (self.kernel_w * self.kernel_h) | |
if zeros > 0.2: | |
masks_[i, :, j // 7, j % 7] = 0 | |
if self.mask_attention: | |
mask2 = masks_[:, 0].reshape(-1, 49).to(self.device) # .to(device) shape (5, 49) | |
mask2 = torch.cat([torch.ones(mask2.shape[0], 1).to(self.device), mask2], dim=-1) | |
mask2 = mask2.unsqueeze(1) | |
attn_map = mask2.repeat(1, 50, 1).to(self.device) # 5, 50, 50 | |
attn_map[:, 0, 0] = 1 | |
attn_map = 1 - attn_map | |
indixes = (attn_map == 0).nonzero() # shape [136, 2] [[aug_im],[index]] | |
attn_map = attn_map.repeat(12, 1, 1).bool() # [60, 50, 50] | |
# masks_flat's shape is (5, 49), for each image in the batch we have 49 flags indicating if to mask the i'th patch or not | |
masks_flat = masks_[:, 0].reshape(-1, self.num_patches) | |
# now we add the cls token mask, it's all ones for now since we want to leave it | |
# now the shape is (5, 50) where the first number in each of the 5 rows is 1 (meaning - son't mask the cls token) | |
masks_flat = torch.cat([torch.ones(masks_flat.shape[0], 1).to(self.device), masks_flat], | |
dim=1) # include cls by default | |
# now we duplicate this from (5, 50) to (5, 50, 768) to match the tokens dimentions | |
masks_flat = masks_flat.unsqueeze(2).repeat(1, 1, 768) # shape is (5, 50, 768) | |
elif self.mask_cls != "none": | |
if self.mask_cls == "only_cls": | |
masks_flat = torch.zeros((5, 50, 768)).to(self.device) | |
masks_flat[:, 0, :] = 1 | |
elif self.mask_cls == "cls_out": | |
masks_flat[:, 0, :] = 0 | |
self.featuremaps = collections.OrderedDict() | |
fc_features = self.clip_model.encode_image(x).float() | |
featuremaps = [self.featuremaps[k] * masks_flat for k in range(12)] | |
return fc_features, featuremaps | |
def l2_layers(xs_conv_features, ys_conv_features, clip_model_name): | |
return [torch.square(x_conv - y_conv).mean() for x_conv, y_conv in | |
zip(xs_conv_features, ys_conv_features)] | |
def l1_layers(xs_conv_features, ys_conv_features, clip_model_name): | |
return [torch.abs(x_conv - y_conv).mean() for x_conv, y_conv in | |
zip(xs_conv_features, ys_conv_features)] | |
def cos_layers(xs_conv_features, ys_conv_features, clip_model_name): | |
if "RN" in clip_model_name: | |
return [torch.square(x_conv, y_conv, dim=1).mean() for x_conv, y_conv in | |
zip(xs_conv_features, ys_conv_features)] | |
return [(1 - torch.cosine_similarity(x_conv, y_conv, dim=1)).mean() for x_conv, y_conv in | |
zip(xs_conv_features, ys_conv_features)] | |
class CLIPConvLoss(torch.nn.Module): | |
def __init__(self, args, mask, device): | |
# mask is a binary tensor with shape (1,3,224,224) | |
super(CLIPConvLoss, self).__init__() | |
self.device = device | |
self.mask = mask | |
self.loss_mask = args.loss_mask | |
assert self.loss_mask in ["none", "back", "for"] | |
self.apply_mask = (self.loss_mask != "none") | |
if self.loss_mask == "for": | |
# default for the mask is to mask out the background | |
# if mask loss is for it means we want to maskout the foreground | |
self.mask = 1 - mask | |
self.clip_model_name = args.clip_model_name | |
assert self.clip_model_name in [ | |
"RN50", | |
"RN101", | |
"RN50x4", | |
"RN50x16", | |
"ViT-B/32", | |
"ViT-B/16", | |
] | |
self.clip_conv_loss_type = args.clip_conv_loss_type | |
self.clip_fc_loss_type = "Cos" # args.clip_fc_loss_type | |
assert self.clip_conv_loss_type in [ | |
"L2", "Cos", "L1", | |
] | |
assert self.clip_fc_loss_type in [ | |
"L2", "Cos", "L1", | |
] | |
self.distance_metrics = \ | |
{ | |
"L2": l2_layers, | |
"L1": l1_layers, | |
"Cos": cos_layers | |
} | |
self.model, clip_preprocess = clip.load( | |
self.clip_model_name, self.device, jit=False) | |
if self.clip_model_name.startswith("ViT"): | |
self.loss_log_name = "vit" | |
self.visual_encoder = CLIPVisualEncoder(self.model, self.device) | |
self.l11_norm = False | |
else: | |
self.loss_log_name = "rn" | |
self.visual_model = self.model.visual | |
layers = list(self.model.visual.children()) | |
init_layers = torch.nn.Sequential(*layers)[:8] | |
self.layer1 = layers[8] | |
self.layer2 = layers[9] | |
self.layer3 = layers[10] | |
self.layer4 = layers[11] | |
self.att_pool2d = layers[12] | |
self.args = args | |
self.img_size = clip_preprocess.transforms[1].size | |
self.model.eval() | |
self.target_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
]) # clip normalisation | |
self.normalize_transform = transforms.Compose([ | |
clip_preprocess.transforms[0], # Resize | |
clip_preprocess.transforms[1], # CenterCrop | |
clip_preprocess.transforms[-1], # Normalize | |
]) | |
self.model.eval() | |
self.num_augs = self.args.num_aug_clip | |
augemntations = [] | |
if "affine" in args.augemntations: | |
augemntations.append(transforms.RandomPerspective( | |
fill=0, p=1.0, distortion_scale=0.5)) | |
augemntations.append(transforms.RandomResizedCrop( | |
224, scale=(0.8, 0.8), ratio=(1.0, 1.0))) | |
augemntations.append( | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))) | |
self.augment_trans = transforms.Compose(augemntations) | |
self.clip_fc_layer_dims = None # self.args.clip_fc_layer_dims | |
self.clip_conv_layer_dims = None # self.args.clip_conv_layer_dims | |
self.clip_fc_loss_weight = args.clip_fc_loss_weight | |
self.counter = 0 | |
def forward(self, sketch, target, mode="train"): | |
""" | |
Parameters | |
---------- | |
sketch: Torch Tensor [1, C, H, W] | |
target: Torch Tensor [1, C, H, W] | |
""" | |
conv_loss_dict = {} | |
if self.apply_mask: | |
sketch *= self.mask | |
x = sketch.to(self.device) | |
y = target.to(self.device) | |
sketch_augs, img_augs = [self.normalize_transform(x)], [ | |
self.normalize_transform(y)] | |
if mode == "train": | |
for n in range(self.num_augs): | |
augmented_pair = self.augment_trans(torch.cat([x, y])) | |
sketch_augs.append(augmented_pair[0].unsqueeze(0)) | |
img_augs.append(augmented_pair[1].unsqueeze(0)) | |
xs = torch.cat(sketch_augs, dim=0).to(self.device) | |
ys = torch.cat(img_augs, dim=0).to(self.device) | |
if self.clip_model_name.startswith("RN"): | |
xs_fc_features, xs_conv_features = self.forward_inspection_clip_resnet( | |
xs.contiguous()) | |
ys_fc_features, ys_conv_features = self.forward_inspection_clip_resnet( | |
ys.detach()) | |
else: | |
xs_fc_features, xs_conv_features = self.visual_encoder(xs, mode=mode) | |
ys_fc_features, ys_conv_features = self.visual_encoder(ys, mode=mode) | |
conv_loss = self.distance_metrics[self.clip_conv_loss_type]( | |
xs_conv_features, ys_conv_features, self.clip_model_name) | |
for layer, w in enumerate(self.args.clip_conv_layer_weights): | |
if w: | |
conv_loss_dict[f"clip_{self.loss_log_name}_l{layer}"] = conv_loss[layer] | |
if layer == 11 and self.l11_norm: | |
conv_loss_dict[f"clip_{self.loss_log_name}_l{layer}_normalization"] = conv_loss[layer] | |
if self.clip_fc_loss_weight: | |
# fc distance is always cos | |
# fc_loss = torch.nn.functional.mse_loss(xs_fc_features, ys_fc_features).mean() | |
fc_loss = (1 - torch.cosine_similarity(xs_fc_features, | |
ys_fc_features, dim=1)).mean() | |
conv_loss_dict[f"fc_{self.loss_log_name}"] = fc_loss * self.clip_fc_loss_weight | |
self.counter += 1 | |
return conv_loss_dict | |
def forward_inspection_clip_resnet(self, x): | |
def stem(m, x): | |
for conv, bn in [(m.conv1, m.bn1), (m.conv2, m.bn2), (m.conv3, m.bn3)]: | |
x = m.relu(bn(conv(x))) | |
x = m.avgpool(x) | |
return x | |
x = x.type(self.visual_model.conv1.weight.dtype) | |
x = stem(self.visual_model, x) | |
x1 = self.layer1(x) | |
x2 = self.layer2(x1) | |
x3 = self.layer3(x2) | |
x4 = self.layer4(x3) | |
y = self.att_pool2d(x4) | |
return y, [x, x1, x2, x3, x4] | |
class CLIPmaskLoss(torch.nn.Module): | |
def __init__(self, args, mask, device): | |
super(CLIPmaskLoss, self).__init__() | |
self.args = args | |
self.mask = mask | |
self.device = device | |
self.loss_mask = args.loss_mask | |
assert self.loss_mask in ["none", "back", "for", "back_latent", "for_latent"] | |
self.apply_mask = (self.loss_mask != "none") | |
self.dilated_mask = args.dilated_mask | |
if self.dilated_mask: | |
kernel_tensor = torch.ones((1, 1, 11, 11)).to(self.device) | |
mask_ = torch.clamp( | |
torch.nn.functional.conv2d(mask[:, 0, :, :].unsqueeze(1), kernel_tensor, padding=(5, 5)), 0, 1) | |
mask = torch.cat([mask_, mask_, mask_], axis=1) | |
if "for" in self.loss_mask: | |
# default for the mask is to mask out the background | |
# if mask loss is for it means we want to maskout the foreground | |
self.mask = 1 - mask | |
self.clip_model_name = args.clip_model_name | |
self.clip_for_model_name = "RN101" | |
self.valid_models = [ | |
"RN50", | |
"RN101", | |
"RN50x4", | |
"RN50x16", | |
"ViT-B/32", | |
"ViT-B/16", | |
] | |
assert self.clip_model_name in self.valid_models and self.clip_for_model_name in self.valid_models | |
self.clip_conv_layer_weights = args.clip_conv_layer_weights | |
self.clip_conv_loss_type = args.clip_conv_loss_type | |
self.clip_fc_loss_type = "Cos" | |
self.num_augs = args.num_aug_clip | |
self.distance_metrics = \ | |
{ | |
"L2": l2_layers, | |
"L1": l1_layers, | |
"Cos": cos_layers | |
} | |
# background model (ViT) | |
self.model, clip_preprocess = clip.load( | |
self.clip_model_name, self.device, jit=False) | |
self.model.eval() | |
if self.clip_model_name.startswith("ViT"): | |
self.visual_encoder = CLIPVisualEncoder(self.model, self.device, args.mask_cls, self.apply_mask, | |
args.mask_attention) | |
self.img_size = clip_preprocess.transforms[1].size | |
self.target_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
]) # clip normalisation | |
self.normalize_transform = transforms.Compose([ | |
# clip_preprocess.transforms[0], # Resize | |
# clip_preprocess.transforms[1], # CenterCrop | |
clip_preprocess.transforms[-1], # Normalize | |
]) | |
augemntations = [] | |
augemntations.append(transforms.RandomPerspective( | |
fill=0, p=1.0, distortion_scale=0.5)) | |
augemntations.append(transforms.RandomResizedCrop( | |
224, scale=(0.8, 0.8), ratio=(1.0, 1.0))) | |
# augemntations.append(transforms.RandomResizedCrop( | |
# 224, scale=(0.4, 0.9), ratio=(1.0, 1.0))) | |
self.augment_trans = transforms.Compose(augemntations) | |
self.clip_fc_layer_dims = None # self.args.clip_fc_layer_dims | |
self.clip_conv_layer_dims = None # self.args.clip_conv_layer_dims | |
self.clip_fc_loss_weight = 0 | |
self.counter = 0 | |
def forward(self, sketch, target, mode="train"): | |
""" | |
Parameters | |
---------- | |
sketch: Torch Tensor [1, C, H, W] | |
target: Torch Tensor [1, C, H, W] | |
""" | |
conv_loss_dict = {} | |
x = sketch.to(self.device) | |
y = target.to(self.device) | |
sketch_augs, img_augs, masks = [x], [y], [self.mask] | |
if mode == "train": | |
for n in range(self.num_augs): | |
augmented_pair = self.augment_trans(torch.cat([x, y, self.mask])) | |
sketch_augs.append(augmented_pair[0].unsqueeze(0)) | |
img_augs.append(augmented_pair[1].unsqueeze(0)) | |
masks.append(augmented_pair[2].unsqueeze(0)) | |
xs = torch.cat(sketch_augs, dim=0).to(self.device) | |
ys = torch.cat(img_augs, dim=0).to(self.device) | |
masks = torch.cat(masks, dim=0).to(self.device) | |
masks[masks < 0.5] = 0 | |
masks[masks >= 0.5] = 1 | |
# background pass | |
if self.apply_mask and "latent" not in self.loss_mask: | |
# if "latent" not in self.loss_mask: | |
xs_back = self.normalize_transform(xs * masks) | |
else: | |
xs_back = self.normalize_transform(xs) | |
ys_back = self.normalize_transform(ys) | |
if "latent" not in self.loss_mask: | |
masks = None | |
xs_fc_features, xs_conv_features = self.visual_encoder(xs_back, masks, mode=mode) | |
ys_fc_features, ys_conv_features = self.visual_encoder(ys_back, masks, mode=mode) | |
conv_loss = self.distance_metrics[self.clip_conv_loss_type]( | |
xs_conv_features, ys_conv_features, self.clip_model_name) | |
for layer, w in enumerate(self.clip_conv_layer_weights): | |
if w: | |
conv_loss_dict[f"clip_vit_l{layer}"] = conv_loss[layer] * w | |
self.counter += 1 | |
return conv_loss_dict | |
def forward_inspection_clip_resnet(self, x): | |
def stem(m, x): | |
for conv, bn in [(m.conv1, m.bn1), (m.conv2, m.bn2), (m.conv3, m.bn3)]: | |
x = m.relu(bn(conv(x))) | |
x = m.avgpool(x) | |
return x | |
x = x.type(self.visual_model.conv1.weight.dtype) | |
x = stem(self.visual_model, x) | |
x1 = self.layer1(x) | |
x2 = self.layer2(x1) | |
x3 = self.layer3(x2) | |
x4 = self.layer4(x3) | |
y = self.att_pool2d(x4) | |
return y, [x, x1, x2, x3, x4] | |