hjc-owo
init repo
966ae59
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import re
from typing import Any, List, Optional, Union, Dict
from omegaconf import DictConfig
import torch
import torch.nn.functional as F
from torchvision import transforms
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
from diffusers import DDIMScheduler
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
rescale_noise_cfg, StableDiffusionPipelineOutput)
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.loaders import AttnProcsLayers
from pytorch_svgrender.diffusers_warp import init_StableDiffusion_pipeline, init_diffusers_unet
class VectorizedParticleSDSPipeline(torch.nn.Module):
def __init__(self, args: DictConfig, diffuser_cfg: DictConfig, guidance_cfg: DictConfig, device: torch.device):
super().__init__()
self.args = args
self.device = device
assert guidance_cfg.n_particle >= guidance_cfg.vsd_n_particle
assert guidance_cfg.n_particle >= guidance_cfg.phi_n_particle
pipe_kwargs = {
"device": self.device,
"torch_dtype": torch.float32,
"local_files_only": not diffuser_cfg.download,
"force_download": diffuser_cfg.force_download,
"resume_download": diffuser_cfg.resume_download,
"ldm_speed_up": args.x.ldm_speed_up,
"enable_xformers": args.x.enable_xformers,
"gradient_checkpoint": args.x.gradient_checkpoint,
"cpu_offload": args.x.cpu_offload,
"vae_slicing": False
}
# load pretrained model
self.sd_pipeline = init_StableDiffusion_pipeline(
args.x.model_id,
custom_pipeline=StableDiffusionPipeline,
custom_scheduler=DDIMScheduler,
**pipe_kwargs
)
# disable grads
self.sd_pipeline.vae.requires_grad_(False)
self.sd_pipeline.text_encoder.requires_grad_(False)
self.sd_pipeline.unet.requires_grad_(False)
# set components
self.vae = self.sd_pipeline.vae
self.unet = self.sd_pipeline.unet
self.scheduler = self.sd_pipeline.scheduler
self.tokenizer = self.sd_pipeline.tokenizer
self.text_encoder = self.sd_pipeline.text_encoder
if guidance_cfg.phi_model == 'lora':
if guidance_cfg.phi_single: # default, use the single unet
# load LoRA model from the pretrained model
unet_ = self.unet
else:
# create a new unet model
pipe_kwargs.pop('cpu_offload')
pipe_kwargs.pop('vae_slicing')
unet_ = init_diffusers_unet(args.x.model_id, **pipe_kwargs)
# set correct LoRA layers
self.unet_phi, phi_model_layers = self.set_lora_layers(unet_)
self.phi_params = list(phi_model_layers.parameters())
self.lora_cross_attention_kwargs = {"scale": guidance_cfg.lora_attn_scale} \
if guidance_cfg.use_attn_scale else {}
self.vae_phi = self.vae
self.vae_phi.requires_grad_(False)
elif guidance_cfg.phi_model == 'unet_simple':
self.unet_phi = UNet2DConditionModel(
sample_size=64,
in_channels=4,
out_channels=4,
layers_per_block=1,
block_out_channels=(128, 256, 384, 512),
down_block_types=(
"DownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
),
up_block_types=(
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
),
cross_attention_dim=self.unet.config.cross_attention_dim
).to(device)
self.phi_params = list(self.unet_phi.parameters())
self.vae_phi = self.vae
# reset lora
guidance_cfg.use_attn_scale = False
guidance_cfg.lora_attn_scale = False
# hyper-params
self.phi_single = guidance_cfg.phi_single
self.guidance_scale: float = guidance_cfg.guidance_scale
self.guidance_scale_lora: float = guidance_cfg.phi_guidance_scale
self.grad_clip_val: Union[float, None] = guidance_cfg.grad_clip_val
self.vsd_n_particle: int = guidance_cfg.vsd_n_particle
self.phi_n_particle: int = guidance_cfg.phi_n_particle
self.t_schedule: str = guidance_cfg.t_schedule
self.t_range = list(guidance_cfg.t_range)
print(
f'n_particles: {guidance_cfg.n_particle}, '
f'enhance_particles: {guidance_cfg.particle_aug}, '
f'n_particles of score: {self.vsd_n_particle}, '
f'n_particles of phi_model: {self.phi_n_particle}, \n'
f't_range: {self.t_range}, '
f't_schedule: {self.t_schedule}, \n'
f'guidance_scale: {self.guidance_scale}, phi_guidance_scale: {self.guidance_scale_lora}.'
)
print(f"phi_model: {guidance_cfg.phi_model}, "
f"use lora_cross_attn: {guidance_cfg.use_attn_scale}, "
f"lora_attn_scale: {guidance_cfg.lora_attn_scale}. \n")
# for convenience
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.alphas = self.scheduler.alphas_cumprod.to(self.device)
self.text_embeddings = None
self.text_embedd_cond, self.text_embedd_uncond = None, None
self.text_embeddings_phi = None
self.t = None
def set_lora_layers(self, unet): # set correct lora layers
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") \
else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim
).to(self.device)
unet.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(unet.attn_processors)
unet.requires_grad_(False)
for param in lora_layers.parameters():
param.requires_grad_(True)
return unet, lora_layers
@torch.no_grad()
def encode_prompt(self,
prompt,
device,
do_classifier_free_guidance,
negative_prompt=None):
# text conditional embed
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
prompt_embeds = self.text_encoder(text_inputs.input_ids.to(device))[0]
if do_classifier_free_guidance:
if negative_prompt is None:
uncond_tokens = [""]
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
else:
uncond_tokens = negative_prompt
# unconditional embed
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=prompt_embeds.shape[1],
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device))[0]
concat_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return concat_prompt_embeds, negative_prompt_embeds, prompt_embeds
return prompt_embeds, None, None
def sampling(self,
vae,
unet,
scheduler,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0):
# 0. Default height and width to unet
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
height = height or unet.config.sample_size * vae_scale_factor
width = width or unet.config.sample_size * vae_scale_factor
# 2. Define call parameters
if prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = 1
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, _, _ = self.encode_prompt(
prompt,
self.device,
do_classifier_free_guidance,
negative_prompt,
)
# 4. Prepare timesteps
scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = unet.config.in_channels
latents = self.sd_pipeline.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
self.device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.sd_pipeline.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.sd_pipeline.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# update progress_bar
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
image = vae.decode(latents / vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.sd_pipeline.run_safety_checker(image, self.device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.sd_pipeline.image_processor.postprocess(image, output_type=output_type,
do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def sample(self,
prompt,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil"):
return self.sampling(self.vae, self.unet, self.scheduler,
prompt=prompt,
height=height, width=width,
num_inference_steps=num_inference_steps,
guidance_scale=self.guidance_scale,
generator=generator,
output_type=output_type)
def sample_lora(self,
prompt,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil"):
return self.sampling(self.vae_phi, self.unet_phi, self.scheduler,
prompt=prompt,
height=height, width=width,
num_inference_steps=num_inference_steps,
guidance_scale=self.guidance_scale_lora,
generator=generator,
cross_attention_kwargs=self.lora_cross_attention_kwargs,
output_type=output_type)
def encode2latent(self, images):
images = (2 * images - 1).clamp(-1.0, 1.0) # images: [B, 3, H, W]
# encode images
latents = self.vae.encode(images).latent_dist.sample()
latents = self.vae.config.scaling_factor * latents
return latents
def get_noise_map(self, noise_pred, guidance_scale=7.5, use_cfg=True):
if use_cfg:
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
noise_map = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond)
return noise_map
else:
return noise_pred
def train_phi_model(self,
pred_rgb: torch.Tensor,
new_timesteps: bool = False,
as_latent: bool = False):
# interp to 512x512 to be fed into vae.
if as_latent:
latents = pred_rgb
else:
pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# encode image into latents with vae, requires grad!
latents = self.encode2latent(pred_rgb_)
# get phi particles
indices = torch.randperm(latents.size(0))
latents_phi = latents[indices[:self.phi_n_particle]]
latents_phi = latents_phi.detach()
# get timestep
if new_timesteps:
t = torch.randint(0, self.num_train_timesteps, (1,), device=self.device)
else:
t = self.t
noise = torch.randn_like(latents_phi)
noisy_latents = self.scheduler.add_noise(latents_phi, noise, t)
if self.scheduler.config.prediction_type == "epsilon":
target = noise
elif self.scheduler.config.prediction_type == "v_prediction":
target = self.scheduler.get_velocity(latents_phi, noise, t)
else:
raise ValueError(f"Unknown prediction type {self.scheduler.config.prediction_type}")
# predict the noise residual and compute loss
noise_pred = self.unet_phi(
noisy_latents, t,
encoder_hidden_states=self.text_embeddings_phi,
cross_attention_kwargs=self.lora_cross_attention_kwargs,
).sample
return F.mse_loss(noise_pred, target, reduction="mean")
def train_phi_model_refl(self,
pred_rgb: torch.Tensor,
weight: float = 1,
new_timesteps: bool = True):
# interp to 512x512 to be fed into vae.
pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# encode image into latents with vae, requires grad!
latents = self.encode2latent(pred_rgb_)
# get phi particles
indices = torch.randperm(latents.size(0))
latents_phi = latents[indices[:self.phi_n_particle]]
latents_phi = latents_phi.detach()
# get timestep
if new_timesteps:
t = torch.randint(0, self.num_train_timesteps, (1,), device=self.device)
else:
t = self.t
noise = torch.randn_like(latents_phi)
noisy_latents = self.scheduler.add_noise(latents_phi, noise, t)
if self.scheduler.config.prediction_type == "epsilon":
target = noise
elif self.scheduler.config.prediction_type == "v_prediction":
target = self.scheduler.get_velocity(latents_phi, noise, t)
else:
raise ValueError(f"Unknown prediction type {self.scheduler.config.prediction_type}")
# predict the noise residual and compute loss
noise_pred = self.unet_phi(
noisy_latents, t,
encoder_hidden_states=self.text_embedd_cond,
cross_attention_kwargs=self.lora_cross_attention_kwargs,
).sample
rewards = torch.tensor(weight, dtype=torch.float32, device=self.device)
return rewards * F.mse_loss(noise_pred, target, reduction="mean")
def schedule_timestep(self, step):
min_step = int(self.num_train_timesteps * self.t_range[0])
max_step = int(self.num_train_timesteps * self.t_range[1])
if self.t_schedule == 'randint':
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)
elif re.match(r"max_([\d.]+)_(\d+)", self.t_schedule):
# Anneal time schedule
# e.g: t_schedule == 'max_0.5_200'
# [0.02, 0.98] -> [0.02, 0.5] after 200 steps
tag, t_val, step_upd = str(self.t_schedule).split('_')
t_val, step_upd = float(t_val), int(step_upd)
if step >= step_upd:
max_step = int(self.num_train_timesteps * t_val)
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)
elif re.match(r"min_([\d.]+)_(\d+)", self.t_schedule):
# Anneal time schedule
# e.g: t_schedule == 'min_0.5_200'
# [0.02, 0.98] -> [0.5, 0.98] after 200 steps
tag, t_val, step_upd = str(self.t_schedule).split('_')
t_val, step_upd = float(t_val), int(step_upd)
if step >= step_upd:
min_step = int(self.num_train_timesteps * t_val)
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)
else:
raise NotImplementedError(f"{self.t_schedule} is not support.")
return t
def set_text_embeddings(self, prompt, negative_prompt, do_classifier_free_guidance):
if self.text_embeddings is not None:
return
# encode text prompt
text_embeddings, text_embeddings_uncond, text_embeddings_cond = \
self.encode_prompt(prompt, self.device, do_classifier_free_guidance, negative_prompt=negative_prompt)
# set pretrained model text embedding
text_embeddings_uncond, text_embeddings_cond = text_embeddings.chunk(2)
self.text_embedd_uncond, self.text_embedd_cond = text_embeddings_uncond, text_embeddings_cond
text_embeddings_unconds = text_embeddings_uncond.repeat_interleave(self.vsd_n_particle, dim=0)
text_embeddings_conds = text_embeddings_cond.repeat_interleave(self.vsd_n_particle, dim=0)
text_embeddings = torch.cat([text_embeddings_unconds, text_embeddings_conds])
self.text_embeddings = text_embeddings
# set phi model text embedding
self.text_embeddings_phi = text_embeddings_cond.repeat_interleave(self.phi_n_particle, dim=0)
def x_augment(self, x: torch.Tensor, img_size: int = 512):
augment_compose = transforms.Compose([
transforms.RandomPerspective(distortion_scale=0.5, p=0.7),
transforms.RandomCrop(size=(img_size, img_size), pad_if_needed=True, padding_mode='reflect')
])
return augment_compose(x)
def variational_score_distillation(self,
pred_rgb: torch.Tensor,
step: int,
prompt: Union[List, str],
negative_prompt: Union[List, str] = None,
grad_scale: float = 1.0,
enhance_particle: bool = False,
im_size: int = 512,
as_latent: bool = False):
bz = pred_rgb.shape[0]
# data enhancement for the input particles
pred_rgb = self.x_augment(pred_rgb, im_size) if enhance_particle else pred_rgb
# interp to 512x512 to be fed into vae.
if as_latent:
latents = F.interpolate(pred_rgb, (64, 64), mode='bilinear', align_corners=False) * 2 - 1
else:
pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# encode image into latents with vae, requires grad!
# latents = self.encode2latent(pred_rgb_)
latent_list = [self.encode2latent(pred_rgb_[i].unsqueeze(0)) for i in range(bz)]
latents = torch.cat(latent_list, dim=0)
latents = latents.to(self.device)
# random sample n_particle_vsd particles from latents
latents_vsd = latents[torch.randperm(bz)[:self.vsd_n_particle]]
# encode input prompt
do_classifier_free_guidance = True
self.set_text_embeddings(prompt, negative_prompt, do_classifier_free_guidance)
text_embeddings = self.text_embeddings
# timestep a.k.a noise level
self.t = self.schedule_timestep(step)
# predict the noise residual with unet, stop gradient
with torch.no_grad():
# add noise
noise = torch.randn_like(latents_vsd)
latents_noisy = self.scheduler.add_noise(latents_vsd, noise, self.t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy
# pretrained noise prediction network
noise_pred_pretrain = self.unet(
latent_model_input, self.t,
encoder_hidden_states=text_embeddings,
cross_attention_kwargs={'scale': 0.0} if self.phi_single else {}
).sample
# use conditional text embeddings in phi_model
_, text_embeddings_cond = text_embeddings.chunk(2)
# estimated noise prediction network
noise_pred_est = self.unet_phi(
latents_noisy, self.t,
encoder_hidden_states=text_embeddings_cond,
cross_attention_kwargs=self.lora_cross_attention_kwargs
).sample
# get pretrained score
noise_pred_pretrain = self.get_noise_map(noise_pred_pretrain, self.guidance_scale, use_cfg=True)
# get estimated score
noise_pred_est = self.get_noise_map(noise_pred_est, self.guidance_scale_lora, use_cfg=False)
# w(t), sigma_t^2
w = (1 - self.alphas[self.t])
grad = grad_scale * w * (noise_pred_pretrain - noise_pred_est.detach())
grad = torch.nan_to_num(grad)
# grad clipping for stable training
if self.grad_clip_val is not None and self.grad_clip_val > 0:
grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val)
# re-parameterization trick:
# d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad
target = (latents_vsd - grad).detach()
loss_vpsd = 0.5 * F.mse_loss(latents_vsd, target, reduction="sum")
return loss_vpsd, grad.norm(), latents, self.t