Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Copyright (c) XiMing Xing. All rights reserved. | |
# Author: XiMing Xing | |
# Description: | |
from typing import Callable, List, Optional, Union, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
from torchvision import transforms | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline | |
class LSDSPipeline(StableDiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
feature_extractor ([`CLIPFeatureExtractor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# 2. Define call parameters | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_embeddings = self._encode_prompt( | |
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
try: | |
num_channels_latents = self.unet.config.in_channels | |
except Exception or Warning: | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. inherit TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
# image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
# do_denormalize = [True] * image.shape[0] | |
# image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# 9. Run safety checker | |
has_nsfw_concept = None | |
# image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) | |
# 10. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
def encode_(self, images): | |
images = (2 * images - 1).clamp(-1.0, 1.0) # images: [B, 3, H, W] | |
# encode images | |
latents = self.vae.encode(images).latent_dist.sample() | |
latents = self.vae.config.scaling_factor * latents | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def x_augment(self, x: torch.Tensor, img_size: int = 512): | |
augment_compose = transforms.Compose([ | |
transforms.RandomPerspective(distortion_scale=0.5, p=0.7), | |
transforms.RandomCrop(size=(img_size, img_size), pad_if_needed=True, padding_mode='reflect') | |
]) | |
return augment_compose(x) | |
def score_distillation_sampling(self, | |
pred_rgb: torch.Tensor, | |
im_size: int, | |
prompt: Union[List, str], | |
negative_prompt: Union[List, str] = None, | |
guidance_scale: float = 100, | |
as_latent: bool = False, | |
grad_scale: float = 1, | |
t_range: Union[List[float], Tuple[float]] = (0.05, 0.95)): | |
num_train_timesteps = self.scheduler.config.num_train_timesteps | |
min_step = int(num_train_timesteps * t_range[0]) | |
max_step = int(num_train_timesteps * t_range[1]) | |
alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience | |
# input augmentation | |
pred_rgb_a = self.x_augment(pred_rgb, im_size) | |
# the input is intercepted to im_size x im_size and then fed to the vae | |
if as_latent: | |
latents = F.interpolate(pred_rgb_a, (64, 64), mode='bilinear', align_corners=False) * 2 - 1 | |
else: | |
# encode image into latents with vae, requires grad! | |
latents = self.encode_(pred_rgb_a) | |
# Encode input prompt | |
num_images_per_prompt = 1 # the number of images to generate per prompt | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
text_embeddings = self._encode_prompt( | |
prompt, self.device, num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
) | |
# timestep ~ U(0.05, 0.95) to avoid very high/low noise level | |
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device) | |
# predict the noise residual with unet, stop gradient | |
with torch.no_grad(): | |
# add noise | |
noise = torch.randn_like(latents) | |
latents_noisy = self.scheduler.add_noise(latents, noise, t) | |
# pred noise | |
latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform guidance (high scale from paper!) | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond) | |
# w(t), sigma_t^2 | |
w = (1 - alphas[t]) | |
grad = grad_scale * w * (noise_pred - noise) | |
grad = torch.nan_to_num(grad) | |
# since we omitted an item in grad, we need to use the custom function to specify the gradient | |
loss = SpecifyGradient.apply(latents, grad) | |
return loss, grad.mean() | |
class SpecifyGradient(torch.autograd.Function): | |
def forward(ctx, input_tensor, gt_grad): | |
ctx.save_for_backward(gt_grad) | |
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward. | |
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype) | |
def backward(ctx, grad_scale): | |
gt_grad, = ctx.saved_tensors | |
gt_grad = gt_grad * grad_scale | |
return gt_grad, None | |