hjc-owo
init repo
966ae59
import os
import pathlib
import numpy as np
import omegaconf
import pydiffvg
import torch
from torch.optim.lr_scheduler import LambdaLR
from methods.diffvg_warp import DiffVGState
from .ttf import font_string_to_beziers, write_letter_svg
class Painter(DiffVGState):
def __init__(self, args, imsize, device):
super(Painter, self).__init__(device=device, use_gpu=True, canvas_width=imsize, canvas_height=imsize)
self.args = args
self.optim_color = self.args.optim_color
def init_shape(self, path_svg, seed=0):
assert pathlib.Path(path_svg).exists(), f"{path_svg} is not exist!"
print(f"-> init svg from `{path_svg}` ...")
# 1. load svg from path
canvas_width, canvas_height, self.shapes, self.shape_groups = self.load_svg(path_svg)
# init color
if self.optim_color:
fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
fill_color_init[-1] = 1.0
for group in self.shape_groups:
group.fill_color = fill_color_init.to(self.device)
# 2. set learnable parameters
self.set_point_parameters()
if self.optim_color:
self.set_color_parameters()
img = self.render_warp(seed)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
img = img.unsqueeze(0) # convert img from HWC to NCHW
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def get_image(self, step: int = 0):
img = self.render_warp(step)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
img = img.unsqueeze(0) # convert img from HWC to NCHW
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def clip_curve_shape(self):
if self.optim_color:
for group in self.shape_groups:
group.fill_color.data.clamp_(0.0, 1.0)
group.fill_color.data[-1] = 1.0
def render_warp(self, seed=0):
scene_args = pydiffvg.RenderFunction.serialize_scene(
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups
)
_render = pydiffvg.RenderFunction.apply
img = _render(self.canvas_width, # width
self.canvas_height, # height
2, # num_samples_x
2, # num_samples_y
seed, # seed
None,
*scene_args)
return img
def set_point_parameters(self): # shape location optimization
self.point_vars = []
for i, path in enumerate(self.shapes):
path.points.requires_grad = True
self.point_vars.append(path.points)
def get_point_parameters(self):
return self.point_vars
def set_color_parameters(self):
self.color_vars = []
for i, group in enumerate(self.shape_groups):
if group.fill_color is not None:
group.fill_color.requires_grad = True
self.color_vars.append(group.fill_color)
if group.stroke_color is not None:
group.stroke_color.requires_grad = True
self.color_vars.append(group.stroke_color)
def get_color_parameters(self):
return self.color_vars
def get_width_parameters(self):
return self.width_vars
def preprocess_font(self, word, letter, level_of_cc=1, font_path=None, init_path=None):
if level_of_cc == 0:
target_cp = None
else:
target_cp = {"A": 120, "B": 120, "C": 100, "D": 100,
"E": 120, "F": 120, "G": 120, "H": 120,
"I": 35, "J": 80, "K": 100, "L": 80,
"M": 100, "N": 100, "O": 100, "P": 120,
"Q": 120, "R": 130, "S": 110, "T": 90,
"U": 100, "V": 100, "W": 100, "X": 130,
"Y": 120, "Z": 120,
"a": 120, "b": 120, "c": 100, "d": 100,
"e": 120, "f": 120, "g": 120, "h": 120,
"i": 35, "j": 80, "k": 100, "l": 80,
"m": 100, "n": 100, "o": 100, "p": 120,
"q": 120, "r": 130, "s": 110, "t": 90,
"u": 100, "v": 100, "w": 100, "x": 130,
"y": 120, "z": 120}
target_cp = {k: v * level_of_cc for k, v in target_cp.items()}
print("init_path: ", init_path)
subdivision_thresh = None
self.font_string_to_svgs(init_path,
font_path,
word,
target_control=target_cp,
subdivision_thresh=subdivision_thresh)
self.normalize_letter_size(init_path, font_path, word)
# optimize two adjacent letters
print("letter: ", letter)
if len(letter) > 1:
subdivision_thresh = None
self.font_string_to_svgs(init_path,
font_path,
letter,
target_control=target_cp,
subdivision_thresh=subdivision_thresh)
self.normalize_letter_size(init_path, font_path, letter)
print("preprocess_font done.")
def font_string_to_svgs(self, dest_path, font, txt, size=30, spacing=1.0, target_control=None,
subdivision_thresh=None):
fontname = self.args.font
glyph_beziers = font_string_to_beziers(font, txt, size, spacing, merge=False, target_control=target_control)
# compute bounding box
points = np.vstack(sum(glyph_beziers, []))
lt = np.min(points, axis=0)
rb = np.max(points, axis=0)
size = rb - lt
sizestr = 'width="%.1f" height="%.1f"' % (size[0], size[1])
boxstr = ' viewBox="%.1f %.1f %.1f %.1f"' % (lt[0], lt[1], size[0], size[1])
header = '''<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:ev="http://www.w3.org/2001/xml-events" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" baseProfile="full" '''
header += sizestr
header += boxstr
header += '>\n<defs/>\n'
svg_all = header
for i, (c, beziers) in enumerate(zip(txt, glyph_beziers)):
fname, path = write_letter_svg(c, header, fontname, beziers, subdivision_thresh, dest_path)
num_cp = self.count_cp(fname)
print(f"Total control point: {num_cp} -- {c}")
# Add to global svg
svg_all += path + '</g>\n'
# Save global svg
svg_all += '</svg>\n'
fname = f"{dest_path}/{fontname}_{txt}.svg"
fname = fname.replace(" ", "_")
with open(fname, 'w') as f:
f.write(svg_all)
def count_cp(self, file_name):
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(file_name)
p_counter = 0
for path in shapes:
p_counter += path.points.shape[0]
return p_counter
def normalize_letter_size(self, dest_path, font, txt):
fontname = os.path.splitext(os.path.basename(font))[0]
for i, c in enumerate(txt):
fname = f"{dest_path}/{fontname}_{c}.svg"
fname = fname.replace(" ", "_")
self.fix_single_svg(fname)
fname = f"{dest_path}/{fontname}_{txt}.svg"
fname = fname.replace(" ", "_")
self.fix_single_svg(fname, all_word=True)
def fix_single_svg(self, svg_path, all_word=False):
target_h_letter = 360
target_canvas_width, target_canvas_height = 600, 600
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_path)
letter_h = canvas_height
letter_w = canvas_width
if all_word:
if letter_w > letter_h:
scale_canvas_w = target_h_letter / letter_w
hsize = int(letter_h * scale_canvas_w)
scale_canvas_h = hsize / letter_h
else:
scale_canvas_h = target_h_letter / letter_h
wsize = int(letter_w * scale_canvas_h)
scale_canvas_w = wsize / letter_w
else:
scale_canvas_h = target_h_letter / letter_h
wsize = int(letter_w * scale_canvas_h)
scale_canvas_w = wsize / letter_w
for num, p in enumerate(shapes):
p.points[:, 0] = p.points[:, 0] * scale_canvas_w
p.points[:, 1] = p.points[:, 1] * scale_canvas_h + target_h_letter
w_min = min([torch.min(p.points[:, 0]) for p in shapes])
w_max = max([torch.max(p.points[:, 0]) for p in shapes])
h_min = min([torch.min(p.points[:, 1]) for p in shapes])
h_max = max([torch.max(p.points[:, 1]) for p in shapes])
for num, p in enumerate(shapes):
p.points[:, 0] = p.points[:, 0] + (target_canvas_width / 2) - int(w_min + (w_max - w_min) / 2)
p.points[:, 1] = p.points[:, 1] + (target_canvas_height / 2) - int(h_min + (h_max - h_min) / 2)
output_path = f"{svg_path[:-4]}_scaled.svg"
print("output_path: ", output_path)
self.save_svg(output_path, target_canvas_width, target_canvas_height, shapes, shape_groups)
def combine_word(self, word, letter, font, results_dir):
word_svg_scaled = results_dir / f"{font}_{word}_scaled.svg"
canvas_width_word, canvas_height_word, shapes_word, shape_groups_word = pydiffvg.svg_to_scene(word_svg_scaled)
letter_ids = []
for l in letter:
letter_ids += self.get_letter_ids(l, word, shape_groups_word)
w_min, w_max = min([torch.min(shapes_word[ids].points[:, 0]) for ids in letter_ids]), max(
[torch.max(shapes_word[ids].points[:, 0]) for ids in letter_ids])
h_min, h_max = min([torch.min(shapes_word[ids].points[:, 1]) for ids in letter_ids]), max(
[torch.max(shapes_word[ids].points[:, 1]) for ids in letter_ids])
c_w = (-w_min + w_max) / 2
c_h = (-h_min + h_max) / 2
svg_result = results_dir / "final_letter.svg"
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_result)
out_w_min, out_w_max = min([torch.min(p.points[:, 0]) for p in shapes]), max(
[torch.max(p.points[:, 0]) for p in shapes])
out_h_min, out_h_max = min([torch.min(p.points[:, 1]) for p in shapes]), max(
[torch.max(p.points[:, 1]) for p in shapes])
out_c_w = (-out_w_min + out_w_max) / 2
out_c_h = (-out_h_min + out_h_max) / 2
scale_canvas_w = (w_max - w_min) / (out_w_max - out_w_min)
scale_canvas_h = (h_max - h_min) / (out_h_max - out_h_min)
if scale_canvas_h > scale_canvas_w:
wsize = int((out_w_max - out_w_min) * scale_canvas_h)
scale_canvas_w = wsize / (out_w_max - out_w_min)
shift_w = -out_c_w * scale_canvas_w + c_w
else:
hsize = int((out_h_max - out_h_min) * scale_canvas_w)
scale_canvas_h = hsize / (out_h_max - out_h_min)
shift_h = -out_c_h * scale_canvas_h + c_h
for num, p in enumerate(shapes):
p.points[:, 0] = p.points[:, 0] * scale_canvas_w
p.points[:, 1] = p.points[:, 1] * scale_canvas_h
if scale_canvas_h > scale_canvas_w:
p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min + shift_w
p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min
else:
p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min
p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min + shift_h
for j, s in enumerate(letter_ids):
shapes_word[s] = shapes[j]
word_letter_result = results_dir / f"{font}_{word}_{letter}.svg"
self.save_svg(word_letter_result, canvas_width, canvas_height, shapes_word, shape_groups_word)
render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(canvas_width,
canvas_height,
shapes_word,
shape_groups_word)
img = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
word_letter_result = results_dir / f"{font}_{word}_{letter}.png"
self.save_image(img, word_letter_result)
def get_letter_ids(self, letter, word, shape_groups):
for group, l in zip(shape_groups, word):
if l == letter:
return group.shape_ids
def pretty_save_svg(self, filename, width=None, height=None, shapes=None, shape_groups=None):
width = self.canvas_width if width is None else width
height = self.canvas_height if height is None else height
shapes = self.shapes if shapes is None else shapes
shape_groups = self.shape_groups if shape_groups is None else shape_groups
self.save_svg(filename, width, height, shapes, shape_groups, use_gamma=False, background=None)
class PainterOptimizer:
def __init__(self, renderer: Painter, num_iter: int, lr_cfg: omegaconf.DictConfig, optim_color: bool = False):
self.renderer = renderer
self.num_iter = num_iter
self.lr_cfg = lr_cfg
self.optim_color = optim_color
self.point_optimizer = None
self.color_optimizer = None
self.scheduler = None
def init_optimizers(self):
# optimizer
point_vars = self.renderer.get_point_parameters()
self.point_optimizer = torch.optim.Adam(point_vars, lr=self.lr_cfg.point, betas=(0.9, 0.9), eps=1e-6)
if self.optim_color:
color_vars = self.renderer.get_color_parameters()
self.color_optimizer = torch.optim.Adam(color_vars, lr=self.lr_cfg.color, betas=(0.9, 0.9), eps=1e-6)
# lr schedule
lr_lambda_fn = lambda step: learning_rate_decay(
step,
self.lr_cfg.lr_init,
self.lr_cfg.lr_final,
self.num_iter,
self.lr_cfg.lr_delay_steps,
self.lr_cfg.lr_delay_mult
) / self.lr_cfg.lr_init
self.scheduler = LambdaLR(self.point_optimizer, lr_lambda=lr_lambda_fn, last_epoch=-1)
def update_lr(self):
self.scheduler.step()
def zero_grad_(self):
self.point_optimizer.zero_grad()
if self.optim_color:
self.color_optimizer.zero_grad()
def step_(self):
self.point_optimizer.step()
if self.optim_color:
self.color_optimizer.step()
def get_lr(self):
return self.point_optimizer.param_groups[0]['lr']
def learning_rate_decay(step,
lr_init,
lr_final,
max_steps,
lr_delay_steps=0,
lr_delay_mult=1):
"""
Continuous learning rate decay function.
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
is log-linearly interpolated elsewhere (equivalent to exponential decay).
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
function of lr_delay_mult, such that the initial learning rate is
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
to the normal learning rate when steps>lr_delay_steps.
pytorch adaptation of https://github.com/google/mipnerf
Args:
step: int, the current optimization step.
lr_init: float, the initial learning rate.
lr_final: float, the final learning rate.
max_steps: int, the number of steps during optimization.
lr_delay_steps: int, the number of steps to delay the full learning rate.
lr_delay_mult: float, the multiplier on the rate when delaying it.
Returns:
lr: the learning for current step 'step'.
"""
if lr_delay_steps > 0:
# A kind of reverse cosine decay.
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1))
else:
delay_rate = 1.
t = np.clip(step / max_steps, 0, 1)
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return delay_rate * log_lerp