hjc-owo
init repo
966ae59
# -*- coding: utf-8 -*-
# Author: ximing
# Description: inpaint_util
# Copyright (c) 2023, XiMing Xing.
# License: MIT License
import os
import pathlib
import cv2
import numpy as np
from omegaconf import OmegaConf
from tqdm import trange
import torch
from torch.utils.data._utils.collate import default_collate
def apply_lama_inpaint(predict_config, device):
# local import
from lama.saicinpainting.evaluation.utils import move_to_device
from lama.saicinpainting.evaluation.refinement import refine_predict
from lama.saicinpainting.training.data.datasets import make_default_val_dataset
from lama.saicinpainting.training.trainers import load_checkpoint
try:
train_config_path = pathlib.Path(predict_config.model.path) / 'config.yaml'
train_config = OmegaConf.load(train_config_path)
train_config.training_model.predict_only = True
train_config.visualizer.kind = 'noop'
out_ext = predict_config.get('out_ext', '.png')
checkpoint_path = os.path.join(
predict_config.model.path, 'models', predict_config.model.checkpoint
)
model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu')
model.freeze()
if not predict_config.get('refine', False):
model.to(device)
if not predict_config.indir.endswith('/'):
predict_config.indir += '/'
dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset)
for img_i in trange(len(dataset)):
mask_fname = dataset.mask_filenames[img_i]
cur_out_fname = os.path.join(
predict_config.outdir,
os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext
)
os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True)
batch = default_collate([dataset[img_i]])
if predict_config.get('refine', False):
assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement"
# image unpadding is taken care of in the refiner, so that output image
# is same size as the input image
cur_res = refine_predict(batch, model, **predict_config.refiner)
cur_res = cur_res[0].permute(1, 2, 0).detach().cpu().numpy()
else:
with torch.no_grad():
batch = move_to_device(batch, device)
batch['mask'] = (batch['mask'] > 0) * 1
batch = model(batch)
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy()
unpad_to_size = batch.get('unpad_to_size', None)
if unpad_to_size is not None:
orig_height, orig_width = unpad_to_size
cur_res = cur_res[:orig_height, :orig_width]
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
cv2.imwrite(cur_out_fname, cur_res)
except KeyboardInterrupt:
print('Interrupted by user')
except Exception as ex:
print(f'Prediction failed due to:')
print(f'{ex}')
import sys
sys.exit(1)