Saibo-backup's picture
use smaller repetition penalty; add doc
a1aa766
raw
history blame
4.24 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import numpy as np
from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
MODEL_NAME = "gpt2"
if __name__ == "__main__":
# Define your model and your tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = model.config.eos_token_id
# Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order!
probs_to_label = [
(0.1, "p >= 10%"),
(0.01, "p >= 1%"),
(1e-20, "p < 1%"),
]
label_to_color = {
"p >= 10%": "green",
"p >= 1%": "yellow",
"p < 1%": "red"
}
def get_tokens_and_labels(prompt):
"""
Given the prompt (text), return a list of tuples (decoded_token, label)
"""
inputs = tokenizer([prompt], return_tensors="pt")
# Load json grammar and create a GrammarConstrainedLogitsProcessor for each call
with open("json_minimal.ebnf", "r") as file:
grammar_str = file.read()
grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
outputs = model.generate(
**inputs, max_new_tokens=50, repetition_penalty=1.05, return_dict_in_generate=True, output_scores=True, logits_processor=[grammar_processor]
)
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
transition_proba = np.exp(transition_scores)
# We only have scores for the generated tokens, so pop out the prompt tokens
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
generated_tokens = outputs.sequences[:, input_length:]
# Initialize the highlighted output with the prompt, which will have no color label
highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids]
# Get the (decoded_token, label) pairs for the generated tokens
for token, proba in zip(generated_tokens[0], transition_proba[0]):
this_label = None
assert 0. <= proba <= 1.0
for min_proba, label in probs_to_label:
if proba >= min_proba:
this_label = label
break
highlighted_out.append((tokenizer.decode(token), this_label))
return highlighted_out
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Grammar-Constrained Decoding with GPT-2
This is a demo of how you can constrain the output of a GPT-2 model using a formal grammar.
Here we use a simple JSON grammar to constrain the output of the model to be valid JSON strings.
The grammar is defined in `json_minimal.ebnf` and is written in the Extended Backus-Naur Form (EBNF).
Internally, it relies on the library [`transformers-cfg`](https://github.com/epfl-dlab/transformers-CFG).
For demo purpose, gpt2 is used, but you can use much larger models for better performance.
"""
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", lines=3, value="This is a valid json string for http request:")
button = gr.Button(f"Generate with json object using {MODEL_NAME}!")
with gr.Column():
highlighted_text = gr.HighlightedText(
label="Highlighted generation",
combine_adjacent=True,
show_legend=True,
).style(color_map=label_to_color)
button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text)
if __name__ == "__main__":
demo.launch()