File size: 922 Bytes
862b85f 2e9a126 8c7cb08 d2aef44 2e9a126 0fc0313 2e9a126 257266d 2e9a126 81ad48c 7e04a0d 81ad48c 2e9a126 de6f935 ca881ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
import gradio as gr
from fastai.vision.all import *
learn = load_learner('resnett.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Skin Diseases Classifier"
description = "A Skin Diseases classifier trained on the HAM10000 dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['mel.jpg','akiec.jpg']
interpretation='default'
enable_queue=True
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|