Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from PIL import Image | |
import numpy as np | |
# Use a pipeline as a high-level helper | |
pipe = pipeline("mask-generation", model="lightmedsam") | |
def predict(image_path): | |
# Perform image segmentation | |
predictions = pipe(image_path) | |
# Access the segmented mask or any other relevant information in predictions | |
segmented_mask = predictions["segmentation_mask"] | |
# Convert the segmentation mask to an RGB image | |
segmented_image = colorize_mask(segmented_mask) | |
return segmented_image | |
def colorize_mask(mask): | |
# Assuming `mask` is a single-channel segmentation mask (grayscale) | |
# You may need to adjust this function based on the specifics of your model's output | |
# Convert single-channel mask to 3-channel (RGB) mask | |
colored_mask = np.zeros((*mask.shape, 3), dtype=np.uint8) | |
colored_mask[:, :, 0] = mask | |
colored_mask[:, :, 1] = mask | |
colored_mask[:, :, 2] = mask | |
return colored_mask | |
gr.Interface( | |
predict, | |
inputs=gr.Image(label="Upload medical image", type="filepath"), | |
outputs=gr.Image(label="Segmented image"), | |
title="Segmented medical image", | |
allow_flagging="manual" | |
).launch() |