File size: 2,074 Bytes
4f12085
4f58d6c
4f12085
 
 
 
 
28dd995
2c174d9
 
 
 
4f12085
 
9213df3
20bb944
e3b861a
9213df3
4f12085
 
260e0f1
16b83cd
9492b8f
1710a12
a7746f5
 
4f12085
e3b861a
4f12085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9213df3
b5870b3
4f12085
77c44c9
4f12085
 
62a6cd4
8f4e395
 
4f12085
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import streamlit as st
import numpy as np
from html import escape
import torch
from transformers import RobertaModel, AutoTokenizer


tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text')
text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text').eval()
image_embeddings = torch.load('embedding.pt')
links = np.load('data.npy', allow_pickle=True)



def get_html(url_list):
    html = "<div style='margin-top: 50px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
    for url in url_list:
        html2 = f"<img style='height: 200px; margin: 2px' src='{escape(url)}'>"  
        html = html + html2
    html += "</div>"
    return html
 
                           
def image_search(query, top_k=8):
    with torch.no_grad():
        text_embedding = text_encoder(**tokenizer(query, return_tensors='pt')).pooler_output
    values, indices = torch.cosine_similarity(text_embedding, image_embeddings).sort(descending=True)
    return [links[i] for i in indices[:top_k]]


description = '''
# Semantic image search :)
'''


def main():
    st.markdown('''
              <style>
              .block-container{
                max-width: 1200px;
              }
              section.main>div:first-child {
                padding-top: 0px;
              }
              section:not(.main)>div:first-child {
                padding-top: 30px;
              }
              div.reportview-container > section:first-child{
                max-width: 320px;
              }
              #MainMenu {
                visibility: hidden;
              }
              footer {
                visibility: hidden;
              }
              </style>''',
                unsafe_allow_html=True)
                
    st.sidebar.markdown(description)
    _, c, _ = st.columns((1, 3, 1))
    query = c.text_input('Search text', value='مرغ دریای')
    if len(query) > 0:
        results = image_search(query)
        st.markdown(get_html(results), unsafe_allow_html=True)


if __name__ == '__main__':
    main()