File size: 1,709 Bytes
7b9e5fa
bdb17a0
 
 
 
 
92b281d
bdb17a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b281d
 
bdb17a0
 
 
 
92b281d
bdb17a0
92b281d
bdb17a0
 
 
 
 
 
 
92b281d
bdb17a0
 
 
 
 
 
 
 
 
 
 
 
 
 
92b281d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("Qwen/Qwen2.5-7b-Instruct")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    # ストリーミングを無効にして、単一の応答を取得
    response = client.chat_completion(
        messages,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
    )

    return response.choices[0].message.content

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="ユーザーの質問にのみ答えてください。", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()